MATH 602 (Homological Algebra) Assignment \#4: Derived Functors

Prof. Jonathan Rosenberg

due Monday, February 26, 2007

Let G be a group. A G-module is an abelian group M equipped with an action of G, i.e., a group homomorphism $\alpha: G \rightarrow \operatorname{Aut}(M)$. (Usually we just write $g \cdot m$ for $\alpha(g)(m)$.)

1. Show that a G-module is the same thing as a left module for the group ring $R=\mathbb{Z} G$. (R is the free abelian group with generators the elements of G, equipped with the ring structure coming from the multiplication in G.) Show that $\mathbb{Z} G$ (viewed as a left R-module) is a projective object in the category of G-modules, and deduce that G-Mod $=\mathbb{Z} G$-Mod is an abelian category with enough projectives.
2. Show that the coinvariants functor Coinv: G - $\mathbf{M o d} \rightarrow \mathbf{A b}$, defined by

$$
M \mapsto \operatorname{Coinv}(M)=M /\langle g \cdot m-m \mid g \in G, m \in M\rangle,
$$

is right exact but not necessarily left exact.
3. For M a G-module, define $H_{i}(G, M)$ to be $L_{i} \operatorname{Coinv}(M)$. Suppose that $M=\mathbb{Z}$ with the trivial G-action. Show that there is a short exact sequence of G-modules

$$
\begin{equation*}
0 \rightarrow I \rightarrow \mathbb{Z} G \xrightarrow{\varepsilon} M=\mathbb{Z} \rightarrow 0, \tag{*}
\end{equation*}
$$

where ε is the augmentation defined by $g \mapsto 1$ for all $g \in G$, and I is the augmentation ideal generated by all $g-1, g \in G$. A priori, ε is just a map of left G-modules, and thus I is a left ideal, but show that ε is in fact a ring homomorphism and I is a 2 -sided ideal.
4. Consider the special case where G is cyclic of order 2 , and thus $\mathbb{Z} G=$ $\mathbb{Z}[x] /\left(x^{2}-1\right)$. Show that I may be identified (as a G-module) with \mathbb{Z} with the sign representation, on which the generator x of G acts by -1 . Deduce that $\operatorname{Coinv}(I)$ is cyclic of order 2.
5. Use the long exact homology sequence of $(*)$ and the fact that $\mathbb{Z} G$ is projective in G-Mod to show (for any G) that $H_{0}(G, \mathbb{Z})=\mathbb{Z}$ and that $H_{1}(G, \mathbb{Z}) \cong G_{\mathrm{ab}}$, the maximal abelian quotient of G. (Hint: You need to compute $\operatorname{Coinv}(I)$. The calculation in (4) is a special case.)

