MATH 602 (Homological Algebra)
 Assignment \#6: $\lim ^{1}$ and Tor (Corrected)

Prof. Jonathan Rosenberg

due Wednesday, April 11, 2007

In this assignment, R is a ring, \mathcal{A} is the category R-Mod of R-modules, and Pro- $\mathcal{A}=\mathcal{A}^{\mathbb{N}^{\circ} \mathrm{P}}$ is the category of "towers" or inverse systems in \mathcal{A}.

1. For the case $R=\mathbb{Z}$, consider the object $\left\{A_{i}\right\}$ in Pro- \mathcal{A} given by

$$
\mathbb{Z} \stackrel{p}{\leftarrow} \mathbb{Z} \stackrel{p}{\leftarrow} \mathbb{Z} \stackrel{p}{\leftarrow}_{\leftarrow}^{\mathbb{Z}} \stackrel{p}{\leftarrow} \cdots,
$$

where p is a prime. Compute $\lim _{\leftrightarrows}\left\{A_{i}\right\}$ and $\lim ^{1}\left\{A_{i}\right\}$.
2. Show that in general, tensor product does not commute with infinite direct products, by showing that

$$
\left(\prod_{0}^{\infty} \mathbb{Z}\right) \otimes_{\mathbb{Z}} \mathbb{Q} \neq \prod_{0}^{\infty}\left(\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Q}\right)=\prod_{0}^{\infty} \mathbb{Q} .
$$

3. (For this part R is arbitrary.) Suppose $\left\{A_{i}, \phi_{i}\right\}$ is an object in Pro- \mathcal{A}, and B is a right R-module of finite type (i.e., having a finite projective resolution P_{\bullet} by finitely generated projective R-modules). Let $C \bullet$ be the chain complex with

$$
\begin{aligned}
& C_{0}=C_{-1}=\prod_{i=0}^{\infty} A_{i}, \quad d\left(a_{0}, a_{1}, \cdots\right)=\left(a_{0}-\phi_{1}\left(a_{1}\right), a_{1}-\phi_{2}\left(a_{2}\right), \cdots\right), \\
& C_{q}=0 \text { for } q \neq 0,-1
\end{aligned}
$$

which has $H_{q}\left(C_{\bullet}\right)=\lim ^{-q} A_{i}$. Tensoring P_{\bullet} by C_{\bullet}, you get a double complex $P_{p} \otimes_{R} C_{q}$ whose entries are non-zero only for $p \geq 0, q=0,-1$. Show that the two spectral sequences attached to this complex converge to the same thing (the homology of the total complex). One of them has

$$
E_{2}^{p, q}=\operatorname{Tor}_{p}^{R}\left(B, \lim _{\longleftarrow}^{-q} A_{i}\right), \quad q=-1,0,
$$

the other has

$$
E_{2}^{p, q}=\lim _{\leftrightarrows}^{-p} \operatorname{Tor}_{q}^{R}\left(B, A_{i}\right), \quad p=-1,0 .
$$

(This theorem is due to Roos, in the paper [Roos] cited in the bibliography of Weibel's book.) Be careful; where do you use the finite type assumption?
4. Now specialize again to the case $R=\mathbb{Z}$. Show that for B finitely generated, you get (from the results of part (3)) a commuting diagram with exact rows and columns:

where H is H_{0} of the total complex.
5. Let $R=\mathbb{Z}$, let $\left\{A_{i}\right\}$ be as in part (1), and let $B=\mathbb{Q}$. Compute all the groups in the sequences of part (4) for this case, and show that exctness must fail. Thus the finite generation hypothesis on B is necessary. Explain how this is related to part (2).
6. Again let $\left\{A_{i}\right\}$ be as in part (1), this time with $B=\mathbb{Z} / p$. Make precise what you get for all the exact sequences of part (4).

