MATH 602 (Homological Algebra) Assignment #6: \varprojlim^1 and Tor (Corrected)

Prof. Jonathan Rosenberg

due Wednesday, April 11, 2007

In this assignment, R is a ring, \mathcal{A} is the category R-Mod of R-modules, and **Pro-** $\mathcal{A} = \mathcal{A}^{\mathbb{N}^{\text{op}}}$ is the category of "towers" or inverse systems in \mathcal{A} .

1. For the case $R = \mathbb{Z}$, consider the object $\{A_i\}$ in **Pro-** \mathcal{A} given by

 $\mathbb{Z} \stackrel{p}{\longleftarrow} \mathbb{Z} \stackrel{p}{\longleftarrow} \mathbb{Z} \stackrel{p}{\longleftarrow} \mathbb{Z} \stackrel{p}{\longleftarrow} \cdots,$

where p is a prime. Compute $\lim \{A_i\}$ and $\lim^1 \{A_i\}$.

2. Show that in general, tensor product does not commute with infinite direct products, by showing that

$$\left(\prod_{0}^{\infty}\mathbb{Z}\right)\otimes_{\mathbb{Z}}\mathbb{Q}\neq\prod_{0}^{\infty}\left(\mathbb{Z}\otimes_{\mathbb{Z}}\mathbb{Q}\right)=\prod_{0}^{\infty}\mathbb{Q}.$$

3. (For this part R is arbitrary.) Suppose $\{A_i, \phi_i\}$ is an object in **Pro-** \mathcal{A} , and B is a right R-module of finite type (i.e., having a finite projective resolution P_{\bullet} by finitely generated projective R-modules). Let C_{\bullet} be the chain complex with

$$C_0 = C_{-1} = \prod_{i=0}^{\infty} A_i, \quad d(a_0, a_1, \cdots) = (a_0 - \phi_1(a_1), a_1 - \phi_2(a_2), \cdots),$$

$$C_q = 0 \text{ for } q \neq 0, -1,$$

which has $H_q(C_{\bullet}) = \varinjlim^{-q} A_i$. Tensoring P_{\bullet} by C_{\bullet} , you get a double complex $P_p \otimes_R C_q$ whose entries are non-zero only for $p \ge 0, q = 0, -1$. Show that the two spectral sequences attached to this complex converge to the same thing (the homology of the total complex). One of them has

$$E_2^{p,q} = \operatorname{Tor}_p^R(B, \varprojlim^{-q} A_i), \quad q = -1, 0,$$

the other has

$$E_2^{p,q} = \varprojlim^{-p} \operatorname{Tor}_q^R(B, A_i), \quad p = -1, \, 0.$$

(This theorem is due to Roos, in the paper [Roos] cited in the bibliography of Weibel's book.) Be careful; where do you use the finite type assumption?

4. Now specialize again to the case $R = \mathbb{Z}$. Show that for B finitely generated, you get (from the results of part (3)) a commuting diagram with exact rows and columns:

where H is H_0 of the total complex.

- 5. Let $R = \mathbb{Z}$, let $\{A_i\}$ be as in part (1), and let $B = \mathbb{Q}$. Compute all the groups in the sequences of part (4) for this case, and show that exctness must fail. Thus the finite generation hypothesis on B is necessary. Explain how this is related to part (2).
- 6. Again let $\{A_i\}$ be as in part (1), this time with $B = \mathbb{Z}/p$. Make precise what you get for all the exact sequences of part (4).