MATH 602 (Homological Algebra)Assignment #8: Cohomology and Extension Theory of Groups

Prof. Jonathan Rosenberg

due Friday, April 27, 2007

- 1. Let p be a prime and let \mathbb{F}_p denote the field of p elements. Let C_p denote a cyclic group of order p, with trivial action on \mathbb{F}_p . By last week's homework, $H^2(C_p; \mathbb{F}_p) \cong \mathbb{F}_p$. Explain how this fact and the classification of extensions of C_p by \mathbb{F}_p matches up with the classification theorem for groups of order p^2 . (Recall all such groups are abelian!)
- 2. Show that $H^2(C_p \times C_p; \mathbb{F}_p)$ has dimension 3 over \mathbb{F}_p . By the Künneth Theorem you are allowed to use this; see Exercise 6.1.10(2) in Weibel, page 166 this cohomology group can be identified with

 $H^2(C_p;\mathbb{F}_p) \otimes H^0(C_p;\mathbb{F}_p) \oplus H^1(C_p;\mathbb{F}_p) \otimes H^1(C_p;\mathbb{F}_p) \oplus H^0(C_p;\mathbb{F}_p) \otimes H^2(C_p;\mathbb{F}_p) \,.$

3. Use the result of (2) to classify central extensions of $C_p \times C_p$ by C_p . Show there is a nonabelian such extension which can be realized as the *Heisenberg group* over \mathbb{F}_p , the group of 3×3 matrices over \mathbb{F}_p of the form

$$\begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} \,.$$

4. When p = 2, there are two isomorphism classes of nonabelian groups of order 8, represented by the dihedral group and the quaternion group. Where do they fit into this classification?