14 Mr. J. E. Campbell on a [Nov. 11,

On a Law of Combination of Operators. (Second Paper*) By
J. E. CameserLL. Read and Received November 11th, 1897.

1. If z and y are operators which obey the ordinary laws of algebra,
we know that Vet = ev*,

I propose to investigate the corresponding theorem when the opera-
tors obey the distributive and associative laws, but not the commu-
tative.

Let 1, denote the operator yz—ay,
(4] ” ” Nr=T4,
Yr ‘ ’ ”» YA T—TY, 1.

Let (P 9) denote YoYa—Ya¥er

(Pr 9 ‘7‘) ”» (P’ q) Ye—Yr (Pa Q)y .
and let (p, g, 7, 8), &c., have similar meanings.

The theorem to be proved is this:—If a,, a,, a;, ... is the series of
numerical constantst discussed in a former paper (Proceedings,

* At the suggestion of the referees, and by permission of the Council, the title of
this paper has been changed.
T These constants are closely associated with Bernouilli’s numbers ; in fact

_1B2n-
ay = (—=1)# 1(227);

‘(Lie, Transformationsgruppen, 1., §144). This may easily be verified independ-
ently thus:—
oyt 1 1 By Byg
=17 = g
Differentiate with respect to ¢; then
1 _B,, 3By s _(f_1\-l,(to1y-?
—ﬂ—'z—!'*'—;rt P (e 1) +(e l)
(1oLl ,Bi, _Bap ) (L_L By, By, )’
(t 2+2!t 1 +.. )+ 7 2+2l‘ 4!t-{-... .
Equating coefficients of ¢>" on each side, we see that

Bz:u»l (-Bl -Bm--l B Bau—s )
043 = (& B,
@n+3) el ~ \2 @t &) @aezit )

from which it can easily be seen that
agn = (— l)"-l

By

(2n)!"
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Vol. xxvirr,, p. 38l), and by, ... by ... by, ... are other series of
numerical constants, derived by certain laws from the first series,

-then o = ¢,
where

W= w+y+ay+aYst .. +3b (B, 9) +Ebjer (0, & )+

the summation being taken in each case for all positive integral
values of p, g, 7, ... (zero included).

Having established this result, it will be shown that z,, z,, ... @,
being any » operators, not commutative with respect to one another,
and A, Ay, ... A, and py, gy, ... p, two sets of arbitrary constants,

Bt tinn Azt A — ,ZBptpt 3pg (9, )+ 2Bper () @) f)+---’

where (p, @) is now taken to mean By, — T, T,

(P» 9 7) ” m (P’ Q) Lp—T, (P, 9)1

with similar meanings for the other symbols, and the summation is
now made by giving to p, g, 7, ... all values from 1 to = inclusive.

The 8's are now, however, no longer mere numerical constants, but
functions of the parameters A, ... A, and g, ... p,.

It will be seen that the number of indices in & 8 function expresses
its degree in A, u; thus @,, is a function of the third degree in
AL e Ay Hy e Moo ‘

In proving these theorems it will be seen that the following more
general theorem is also true :—

If w=ax+..+az,+a, (P Q+...tau(p g r)+...,
wy = byt .+ b2+ by (2 O+ o e (23 0 )+ .y
then @, g% = e,

where wy = @+ ... 4 Catn+Cpg (P @) Foeet+ Coge (2, G 7)1t
Here the a’s and the b’s are any constants whatever, and the ¢'s ave
other constants depending on them.
2. The identity
() " n- ‘_1 "=
(&) a'y = ya"—ny "'+ "_Q-:!_)y'“’ '

T ey
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obviously holds when n =1, Assume that it also holds for all
values up to #; then

"y = zyr’ —nay, 2" '+ ”———H;Tl 2y l—

Now  ay=yas—y, 2 =yT—Y, Y1 =YaT=Y,;

therefore  2"*'y = ya*'— ny, @+ ?—%:——L) Yp2" =
- y1‘l'"+ nYy wn-l
—_ ymn¢l_(n+1)ylwn+ (n';]-)” zn-l -

so that the identity holds umversa,lly, since it holds when n = 1.

If [y2’] = y2’ +ayz"" ' +aiya" 2+ ... + 2y,
we see that
(B) i ]_ v . g g (=1)y
G+DU 1A B T3 =21 T D!

for the identity holds when »=1; and, assuming that it holds for all
values of 7 up to n—1, then

()= [ e 2

= ym” ylw" —1\-1Yna® ?_”2
IT=D1 2T (n=gyi T T D=+

but a"y = ya© -ny‘m"°‘+ ﬁﬁ——1-2;1/ 2"l

so that, by adding similar terms in the two series, we get

[n] (”+1){l'n' 2:12;w’:;)!+"'+((:_}r%yf};

that is, the identity also holds when r = .

3. y, denotes yz—zy, which might be written (yz), so y, denoting
(yz) x—2 (yz) may be written (yaz). Similarly (yzz) is taken to
denote (yz) z—z (yx), and so on. From the definition of the symbol,

(y2) + (zy) = 0,
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by expansion we also obtain immediately
(2y2) + (yaz) + (szy) = 0.*
The above idehtity may also be written
(y22) = (yaz) — {y () },
where {y (z2)} means y (zz)—(2z) y, or
(yaz) = (yzz) —(y2),
% denoting zz—az; that is, from the ordinary identity
Yoz = yaw—yx,
we deduce the symbolical one .
(ya2) = (yaz) —(y=)-
Tt follows in the same way that
(yzz,) = (ya®) ~ (y2),
and (yaz,.1) = (y2,.12) — (yz,),
where 7, = 2, )\ XZ—22,_,. '
Now, by exactly the same reasoning as from the formuls
oYy =yr—=Yn TH=N¥"Y» Y1 = Yraa®—Yn
we deduced that

) g y! N ]
oy by = g — SO (-

80 from the above symbolical formule we deduce that
B)  (yza) + (yaza" M)+ ... + (y2z)

1)! r !
= ) = gy G (21 (),

where (yza™) is a symbol used to denote (yzz ... to r terms).

4. Now
{y(w+0)} = () + (),
{y (w+0)?} = {y (u+0)} x (u+v)—(u+v) X {y (u+v)}
= () + () + (o) + (o),

# This may easily be deduced as a particular case of the Jacobian identity, and
to many of the theorems which follow we have corresponding ones, which are
deduced from the Jacobian identity by the same method as the theorems given are
deduced from the above formula.

VOL. XXIX.—No, 613. c
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and similarly we see that
{y ()0} = (yu®) + (yu"Vo) + (yu 2 vu) +... 4 (yo*).

For the purpose of this paper it will be found necessary to find the
coefficient of p in {y (2+pz)"}, where

z2=y+a,y,+a,%,+... to infinity;
and we see by considering the above that it is
(92 95) + (4o 20) + (g ) + .

which may also be written
ey — T (r-2)
=D ¥ ™) ~ gy 52

. 3 (:13)! (2" = o+ (=1)" (g2r1),s
by (B).

5. Our object being to éxpress this result in terms of y, y,, ... only,
we must simplify such an expression as (yz,2"), or (yz,),— (%9)»

Bmes (y2,2") = (y%)e=(%Y):
where (uv), is a symbol used to dennte the result of writing uv for y
in v,. '

It will first be proved that

r(r=1)

a1 %, gVt ... tuv, ¥

©) (W), =wv+ru, v+
This theorem is analogous to Leibnitz's, and is proved by the same

method, thus
(uv), = wvz—auv = uzv+uv, —2UV

= 2uv + Uy v + UV, —2uv = %, v+ uv,.

Assuming then that the theorem holds for all values of  up to », it
will be proved that it also holds for values up to n+1. Since

pen !

_ n!
()= 2 )

UpUnpy

¢ For the theorem which bears the same relation to the Jacobian identity which
this does to the identity - (zyz) + (yz2) + (ezy) = 0,
see Lie, 11., p. 280.
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therefore

(@) =3 — " (w,00,)
" s pl(a—p)!

_ pen n! pen !

= pz-o P—————! (n—p) ! up+lvn-p+ p?o mup'v,,_,,,
pen+l 1 )

= ni UpVUner-ps

T g0 pl(n+1—p)!

that is, the theorem holds for values of » up to n+1, and therefore
generally.

6. Using now this result, let us collect all the terms in the series
! !
f!—(;,t;l—)f {@)r-1— ()} — QW;;—Z? {@2)-a— (@Yo} + ...

et (=1)1 .{yzr-l—zr—ly} )
which end in z,, We get, by aid of (C),

r! qr-g-1- L2% __L — 1 (_1)1
(r—gq-=1)! {1! q! 21 (g—1)! toot (g+1)! 0!}
7! Ypg-12,

= @+D! (rmg—D)1’
thus the terms in the series which end in 2, z, ... or z,_, are given by

Ehlad 7!

Eo (g+1)! (r-—q—l)!y""lz'
(understanding by z, merely z).

Collecting all the terms in the series ending with y,, we get

=7l g9, 1 _ 1 (=1)re!?
{ll(r—q-—l)! 2!(r—q-—2)!+m+('r—q)!0!}

q!
= :"l!,”r_-q;l_yg,
' =)'
go that the terms in the series which end in 9, y, ... or ¥,., are
given by gar=l '

-3 Tife-g1Y
g=0 q!(r—¢q)!
which may be written (as we see by writing r—q'—1 for ¢)

ar-1
"3 7! 2 Yrog1

T e (@+DI(r—g-D’

c2
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Thus the total series required may be written in the simpler form
ge=r-l 7!

q?o (q-{— 1) ! (/r__q__]) 1 (yr_q_xz,)

7. Now 2 =y+aoy+a,y,+ ... to infinity;
therefore 2, = Yot o Yo+ a3y 40+ ... to infinity ;
therefore (y,-4-12,) = ¥r-g-1 (¥ + &1 Ygs1+ @3Yg42+ ... to infinity)
~ Yo+ 01Ygs1+asYgaa+ ... to infinity) y,_._,.

We thus see that, (m, n) denoting ymY.—¥.¥m the series may be
written

thlaty 7!

o @FDT=g=D!

{(r—g=1,¢)+a,(r—q-1, q+1)

+a, (r—g—1, g+2) +... to infinity},
or in the simpler form .

gur—1 x=® ,’.!

o o @ DL—g=

1)!0, ("""'q_la q+K) H

mar=1 neo ,’.|

(D) or ' E 2 G yn=r+l

1 ”
me0 nap-lem '(n—m)l(m’ )’

if we define a, as unity.

8. We have thus found the coefficient of p in the result obtained
by substituting for @, x+pz in any term y,. It will be necessary to
find the corresponding coefficient obtained by making the same sub-
stitution in any terms such as (p, g) or (p, ¢, 7).... To find this
" consider a particular term (p, g, 1, s), though the reasoning is
general.

First, it is clear that the coefficient will be the sum of the co-
efficients obtained by substituting for each element y, of the term

the series mar-l  newm
(m, n).

2 Gmenersl 55—
me0 nar-l-m man-re '('r m)

Take a particular term of this series (m, n) ; then it contributes

7! Gnsnre ‘
. m {r, g (m, n) s}a.

where the part (m, n) is to be taken as one symbol in expanding the
complex symbol {p, g (m, n) s}.
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Now we have seen that
(g, m, ”‘)—(Qs n, m) = {q (m, ”)};

und it is easily seen to follow that

{Pa q (m, n) 5} = (p, ¢, m, 7, 8)— (2, g, #, m, 8),

so that the coefficient derived from (p, g, 7, 8) will consist of five-
lettered symbols.

9. We now know how to obtain the coefficients derived from

YNYs oo G¥e) voor Wp¥a¥r) oo

and must next obtain the coefficient derived from z, which might be
called the first derived coefficient of z; from this we similarly derive
a coefficient which might be called the second derived coefficient of z,
and so on.

10. z = y+ a9, + 2,9+ ... to infinity,
80 that the coefficient derived from it will be

3by (25 9

where p and ¢ may have any positive or zero integral values, and

bm denOtGB raprg+l ‘l"!
a,a, —y
rap+l TPl 'p! (')‘-—p)!

11. What will now be the coefficient which is similarly derived
from 3b (5 9) ?

From what we have seen it will be of the form

2byer (7, 9 7)5
where the summation is taken for all positive and zero integral
values of p, ¢, r. Similarly the coefficient derived from this will be
of the form 3 Bpere (2, 0 7, 5),
where the summation is taken for all positive and zero integral

values of p, ¢, 7, s; and so generally. We have, however, to show
how to calculate the numerical constants b, bpgray oee +
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12. We saw that the term (p, ¢, 7, 5, £) was made up by contribu-
tions from the terms (z, 7, s, t), (p, @, 5 t), (p, ¢, z,t), and (p,q,7,%).
Take (z, 7, 5, £) : the term (p, g, 7, s, t) was derived from this by

z!
. ap-rq-z’lp!‘_(;:ﬁ (» 9
replacing # in b, (=, 7, s, t), and by

!
Qgspazsl q!('—:_._ﬁ (Q’ P)
replacing z in b,,, (=, 7, s, t).
The first of these, then, contributes to the coefficient bygrse the series
zapig+l w!
S Geemsa P a—p)! burat 3

and the second contributes
zupe+gel w!
z-il Opsg-a41 q! (z—q)! b.”“ !

or, if we take # as usual to denote z (z—1)... (=—p+1), and re-

member that a® is zero if z<p, the two together contribute to

bper the series

zapsgel (z(:’) 2@
! q!

Similarly, by considering the series which the other terms contribute,

we see that

20 ) %¢q+l-zbn:t+ap+lbqnt—aq-)lbpru'
-

zap+a+l 4..(p) (2) zeg+r+l 4.(9) (r)
x @ @
b t = — -:bsn + .z Qgrre -zb 3t
pare 1 1 prq+l U 1 1 g+r+l-2Ypx
zul p q. za0 q. r.
zar+s+l {r) (s) Toatt+]l {s) (¢)
4 X 4 @
+ (_, - T ) ar+ul-szqxt+ ("' - 1 ) a’nul-zbm
za0 r! s! z=0 s! t!
+ ap»lbqru_ah-l bmr:'

The coefficient of any symbol of n+1 letters is deduced by a similar
rule from the coefficients of the symbols of » letters, obtained by
crossing out two successive letters in the given symbol of (n+1)
letters.

13. We now proceed to obtain the theorem e’e*=e”. In the paper
previously referred to (Proceedings, Vol. xxviir., p. 381) it was proved
that, if u is & constant, (1+puy) ¢* is equal to ¢****+terms involving
powers of u of the second and higher orders.
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We might express this in the form of the equation
(I +py) e = e+ 'R,
where B is some operator formed by combinations of z and .

Let the result of substituting #+ pz for  in 2, when 2z is expressed
explicitly in terms of # and y, be called P,; and let P; be obtained
from P, by expressing P, explicitly in terms of z and y, and sub-
stituting x4 uz for 2 in it, and let P, be similarly obtained from P,,
P, from P,, and so on. - ’

Defining @, as 2+ p2, z, a8 2,+uP,, 2, a8 z,.,+pP,_,, we see that
the result of substituting z4pz for « in @, (when explicitly ex-
pressed in terms of z and y) is x;; and generally that the result of
substituting #+uz for z in z,_, (when explicitly expressed in terms
of # and y) is ,. We have therefore

(I+py) e =e* +p'R,
(+py) et =6 +p'Ry,

(1 +py) &' = e+ u'R, .,

where R,, Ry, ... R,., mean the result of substituting for z,
@y, @, ... ,-1 respectively in R.

Multiplying the first of the above equations by (1+py)"~", the
second by (1+uy)*?, and so on, and adding, we obtain

(L+pyye = +pt {(1+pg)" B+(1+py)* B+ ... + By}

Let us now take un =1, and let » increase indefinitely, then, as
in ordinary algebra,
(A+py) = .

The subject on which the operators z, y are to act will be supposed
such that R operating on it gives & finite result, and the like will be
supposed to hold for each of the operators R,, B,, ... . It will follow
that the effects of (1+uy)"~' B, (1 +py)"*R,, ... willalgo be severally
finite, and if A is the greatest effect any one of them can have, then
the greatest effect of ’ '

B {(L+py) B+ (1+py)** Byt .. + By}

will not exceed % nd, that is, their effect will ultimately (as n in-

creases) be zero.
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We have thus obtained the equation
e'e” = ™,
where z_ denotes the limit to which «, tends as n increases in-
definitely.

14. Now @, = z+pz+p (Pi+Py+...+P,_),

so that to obtain the form of @, as » approaches infinity it will be
necessary to evaluate P,, P, ... P,_,.

P, being the result of substituting @+ uz for z in 2, we have
P, = z+un+p'%s+...+47,+... to infinity.*
So that we obtain
P,=P tpz+pt z2y+u z5+...
st pt atpt gt

BRI AL AL S R

‘We notice that in P, the coefficient of " is
2zr+zl,r-] +zﬂ,r—2+ soe + zr-l, 8

that is, the 2’s which have the single suffix are counted twice, those
which have the double suffix are counted once.

Expressing P, similarly, we notice that the coefficient of u* is
31,."‘3 (5]_;_1'*‘52..—_ + ver +Zr-]'|)+22pi .8
where the summation is taken for all positive integral values (ex-
cluding zeros) of p,, ps, P, Which make
P1+Pﬂ +py =1
Let 3z,,,.,, where the summation is taken: for all positive
integral values of p,, p, ... p, which make

ntpt..tp=1,

Ay

be written 0.

* The notation z, is here employed for temporary convenience to demote the
coefficient of u*, and has no connexion with the notation z, meaning #,.,z—z¢,_;.

+ Here z,, is taken to denote the coefficient u? when z+ uz is substituted for z in
zp (explicitly expressed in terms of z and y), and the result expanded in powers of .
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Then it is suggested by the above two particular cases that the
coefficient of. u" in P, is
' n(n—=1)%r n! A n.r
nz,+ 31 C +... (=1 (n—)\)!0+"'+0'
The summation is for n terms, but if r<n» it need not be taken to
more than » terms, for from the definition

rte.s

] =

Assuming that this law holds for P, (we have seen its truth when
n=1, 2, or 3), we shall prove that it holds also for. P,,,.

15. We can write P, in the following form :—
P, =z+png+p’ {nz,-{- %T_llﬁn}

+1 {”za+ ’A’;—!_‘D (zn"fzm) + 7ﬂ”;:%@‘——222m}

+ ...

Consider now how the separate terms of this series contribute to the
generation of the coefficient of p” in P,,,. A term such as p's,,,.,,
becomes, in generating P,

0 +1 Pt d +1
M zp,p,...p,,,"'l“"r ”p.p....g,,,l"'f‘ i 2000 0m et ... "‘ _zp,p....pm|+ cen o

If, then, we use the symbol "0 to denote the result of changing

A.m
every term such as z,,, .., in O into g, ,,, We see that to the

coefficient of p" in P,,,,

z has contributed 2y

‘ 1.1

:“‘nzl i3] 1 n 0 ]

r-1

_ C1.2 —1) 2.2
w {nzs+ ﬂ%,—llzu} N A '—"5%—,—1) 0,
1.«=1 —_ 2.x-1
the «th term " " n 0 +2 (n—1) g +...,

r-x+1 2! recel

the summation going till either the numerical coefficient or
Aox~-1
C vanishes; that is, either for » terms or «—1 terms, whichever

rertl

may be the lesser number.
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The limiting value of « will be r+1, if we understand by
0 merelyp(}q.
c .
Hence the coefficient of p’ in P,,, is
11 1.2 l.r-1 _ 2 2.r-1
fbn (040 4.+ 0 )+ 2@ (T4 0+ 470 ) +..
1 rea 1 2! r-3 r-8 1

A2 A+l A, r-l)

n!
T =) (,qx"',q.‘*' -+ 9

(the limit of A being » or r—1, whichever may be the lower integer),

n (n— 1)0+ . B,

+”0 t N (n—N) (n—)\) o

(the limit of A being 7 or r, whichever may be the lower integer).

A.r
Now it is at once seen from the definition of the symbol C that

A.r A=l.r-1 A-l.r=2 A-l.a-1

C= 0 + 0 +..+ 0 ;
1 2 r-a+1
.r 1.2 lor=1
therefore O’ O + 02 +.+ 0,
r= 1
o 2.8 2.r-1
0 = 0 + 0 +.+ C,
r-32 r-38 1
Adl.r AN A+l A.r-1

r-a r-a+1

0 =0+ 0 +...+10;

the coefficient of u” in P,,, is therefore

n(n=1)3%y n! rr
o C 4+t =D msI=N) C+...

(the limit of A being the smaller of the two, n+1 and r)

2.r
z,4+n 0 +

+n O+n(n—1) n(n—l)(" —=2)° 0+ )T'—(—__)0+

"(the limit of A bemg the smaller of the two, # and )

_ (n+1)n (n41)! 2

(the limit of A being the smaller of the two, n+1 and ) ;

that is, the law holds also for P,,,, and therefore universally.
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16. We have thus found the form of P,. Our object is, however, to
find the form of z,; this may easily be deduced. First, let us find

the coefficient of p" (»>0) in P,+P,+...+P,_,; this is made up of
contributions

from P,, 2y
2.r
w Py 2,4+ C,

2 8.r
. Py 3,+30+0,

(n=1)! s
Ty O

(the limit of A being the smaller of the two, n—1 and 7).

w  Pnony (n—l)z,+-(%@_2)20'+...+

Adding, we see that the coefficient of u"is

n (n—1) n(n—1)(n—2)%" n! Ay
o ot 3] O+t T 9 +

(the limit of A being the smaller of the two, »—1 and 7).

Call this series D,,,.

Now the term independent of p in P,+P;+...+P,_, is obviously
(n—1) z; therefore

@, =a+pz+p (P +Py+...+Pasy)
=z +npz+p’Dy+p*Dy+... to infinity.

17. What, then, does this approach when we take un = 1, and let
n increase indefinitely ?
The only coefficient in the series u"D, which does not vanish when

r=1.r-1

p= %- and # is indefinitely increased, is the coefficient of O ; for

n!(l)'
n _n(n=1)...(n—2X)
A+D)Ia=x=1)1" — oA+

and r—12X;
therefore the expression vanishes when » increases indefinitely, unless
r=A+1,

r=l.r-1

. . C
in which case u"D, becomes -
r:
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The limiting value of z,, as » approaches infinity, is therefore

101 ‘20'! 808
w+z+2 + = 3 + 4"-i- . to infinity.

But the only term in 0 is 7, the only term in 0 is 2, the only

term in 0 is z, ,,.. to = suffixes.

Now z, denotes the coefficient of pu in the result of substituting
z+uz for z in 2z, and we have seen that it is equal to 3b,, (p, q).

2y, then, denoting the coefficient of u when for « we write z+ uz in
Sb, (2, ¢), has been shown to be b, (p, ¢, 7), and so on; so that
we see finally that

1 1
2z, =zs+y+aytay+..+ m Ebbq (Pa Q)+ g'!'szqr(}% 9, T)+---:
and ’ Vet = g™,

It will be noticed that the terms in b, are of the second degree
in the set a,a,a, ..., and of weight p+q+1 in the suffixes of that
set; and we easily see the more general fact that the weight of
every term is constant ; e.g., b has weight

pHe+r+stitd;

thus the functions are isobaric in the set a,, a,, a,, ....

Also we see that the number of letters in a symbol (pgrst) ex-
presses the degree of the symbol in y, and p+g+r+s+¢ expresses
the degree in .

18. We have seen how to express e’e® in the form ¢, and have
obtained an expression for w, but for development of the result it
will be found useful to change the form in which w is expressed.

y, means the same as (yz®); it will be advantageous to express
(p, q) also in the form of a sum of terms (ya2’ ... y2®), and similarly
to express (p, ¢, 7)... .

We can easily see that
= ¥%¥a) = (Yon1Ya-1) = (YpYe-12),

and, by applying the same transformation a second time, we see that

(%Ya) = (Ype2Yg-2) —2 (ypn Yg-2%) + (YpYg-32%).
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Assume, then, (=1) (%Y,
= (yp"y«-r) -r (yp+r-l yq—2w) + ﬂ%—'_ll (ypfr-ﬂyq-rm(%)) e

‘We shall prove that the expression on the right is unaltered in value
when for » we write r+1; that is, if the identity holds for the value
7, it also holds for the value r+1, and, holding for » = 1, it will then
be seen to hold generally.

Since — (%Y%) = Wps1Ya-1) = (Yp¥e-1%)s
we see that  —(4,402”) = (Yps1¥0-12") = (Yp¥e-12"*") 5
therefore = UprrYa-r) = Wpsra1¥gar-1) — UprrYg-r-1®)
+7 (Yprr-1Y0-r8) = =7 YprrYg-r-12) +7 Yprr-1Yg-r-12")
-1 -1
_r (7‘2! ) (yp”_ayq_'w(n)) = r (7'2' ) (ypw_‘yq_'_la(z))

-1
-t ("2! ) Wpsr-2Yg-r-12%)

+ ee e = oe

Adding, we see that the sum of the members on the left, which we
kmow, is (=1 (%9
1
= (ymnlyq-r-l) - ('r'*' 1)(‘.'/;:"3/«-'-1”) + L-;# (ypn-lyq-r-lmm) - ey

and this proves the theorem required.
19. We can therefore write (—1)* (3,y,) in the form
-1
(Yp+o¥) =2 (Ypeo-1y2) + 1'92‘,‘—2 (Ypog-2y2™) — ...

— (y:c“’“’y) —q (ym(p+q-l) ya:) + Q_(92T"ll (ya‘.(”""")yw(’)) — ey
the general term being
—~1) - .__g!_ (p+7~8) g)(8)
where s is any integer < g¢.

By taking the separate terms of this series we see in the same way
that the general term in (y,y,7,) is

(_1)-+l+q+rq! 'I'!

T =T r—gT W& ),
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and the summation is to be taken for all integral values
§<q and t<w

Any other term in w may be similarly expressed.

If, now, instead of y we write #;, and instead of # write z,, and if

we denote such a term as (2,2 2% 2{”) by (12P192¢), we see that

e"e™ = ¢e“,
where w = 2+ 23+ B (12) +Bis (122) +B (121) +...,
where the 3's are a new set of numerical constants.

20. How are these constants to be determined? By expressing
the old symbols (y,y,%,) in terms of the new; e.g., because

(12p+e-91 2r+1-01 20)
sltl(g—s)! (r—1)!

1yt
b oar (ypyqyr) =3 (_l)uu-qw bm'q. r!

writing prg—s=\, r+s=t=p, t=yv,
we see that
_ " boor At +v—0g)! 7!
By sonaoiam = 3 (1) (X—;)! =) (p+v—m)p!
where the summation on the right is to be taken for all possible
(positive integral or zero) values of p, ¢, and r which make no
factorial (A—p)!, &c., negative.

21. Let @, @, ... #, be n operators which obey the distributive
‘and associative laws, but not the commutative.

(1,2) will ‘be used to denote )2y — 2,2y,
(19 21 3) ” ” (lv 2) Ty—1y (11 2):
and so generally. We thus get a series of symbols; X, will be used
to denote any symbol of the first order, 7., ,, #; ...or =, X any
symbol of the form (p, ¢), and so on.

Suppose that from these symbols X, X, ... we were to try and

form others, such as
(XpXo) =X, X~-X.X,;

it will be proved that we get no new symbols, but merely & linear
combination of symbols of the form X,,,, so that the symbols them-
selves may be said to form a linear group.
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If one of the suffixes p or ¢ in (X, X,)is unity, this is evident, for
X,%,—w, X, is by definition a symbol of form X;,.
Suppose, now, that we have proved that, if one of the suffixes p or
q does not exceed r, (X, X,) can be expressed as a linear combination
of symbols of the form X,,,; thenit will be shown that the same
result holds if one of the suffixes does not exceed r+1; and the
theorem, having been proved when » = 1, will then hold generally.
By definition X=X, 2,—2,X,;
therefore }
XX, — r+xxv = X, (era_wlxr)—(xra:a_wlxr) Xu
= (X, X,—X.X,)z,—z, (X, X,~-X.X,)
+ X, (X.2,—2,X,)—(X,2,—2,X,) X,.

Now, by hypothesis, X,X,—X, X, is expressible in terms of
symbols of the form X,,,; therefore .

A x.X,—-XX)z—2 (X, X,—-X,X,)
is expressible as a linear combination of symbpls of the form X,,,.,.
Again; X, (X,2,—2,X,)—(X2,~2,X,) X,
is of the form X, X,,,—X,,,X,; and therefore (since one suffix does
not exceed ) in terms of symbols of the form X,_,,,; that is,

(X.X,,)) is expressible as a linear combination of symbols of the
form Xynr+1'

22. There are n independent symbols of the first order; there are
#* symbols of the second order, but only M"'z;l) of these will be

independent, owing to the identities

(7 9)+(g, ) =0, (p,p)=0.

The #® symbols of the third order will be still further reduced by
reason of the additional identity

(Pa q, "')+(q, ”, P)+('r’ y 3 q) =0;

- and there are doubtless additional identities for symbols of the fourth
and higher orders. Without entering on the question of the number
of independent symbols of any given order, we shall suppose that a
" gystem of independent symbols has been obtained.
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23. If, now, 2 = ay %y + a5 2+ ... + 0,

4
Ty = Q1%+ A2, 25+ ..o + @y, By,

where the set of letters a,, denote any arbitrary constants, we can
express the symbols X[ X7 ..., which correspond to X, X; ..., as linear
combinations of the latter, the coefficients in the identities being
functions of the set of coustants a,.

In particular, if z = Moy +... + N2,
m’; =+ + pay,
we can express any such symbol as (1, 2, 2)° in terms of the complete
set of independent symbols of the third order, and the parameters
Al oo Am o I TS
but we have proved that e e = ¥,
" where w =2+ 23+ (12) +B,,, (122) + By, (121Y,
and the 8’s are numerical constants whose values we know how to
determine ; therefore
ottty gntbuntn — oZagtptZapg (7, 0) +3aper (9,0, )

where the a’s are now functions of the parameters A, ... A,, p; ... sy,
and known numerical constants ; thus a,, ,, , is the numerical constant

By3s x. coefficient of the term (p, g, ) which occurs in expressing
(122)° in terms of symbols of the third order derived from

@, v0 By + B3y X coefficient similarly obtained from (121)'+....
ay,..» 18 clearly of the third degree in X\, ...A,, p,...p, and so
generally.

24. The more general theorem which has been enunciated is seen
to be implicitly proved in what has gone before ; for we have proved
that . "

e = e,
where wy = wy+wy+a (w0,w5) +a, (w0, w50,) +o .
+13b, {0 w?) w0 wl)} + ...,
and we see that every term on the right is of the form

T+ ..o Feazateg(p, @)+ ... -l;-c,.,,(p, @) +....



