MATH 744, FALL 2010 HOMEWORK ASSIGNMENT #3, PARTIAL SOLUTIONS

JONATHAN ROSENBERG

Hall, Chapter 3, Problem 9. Let

$$X = \begin{pmatrix} a & 0\\ 0 & -a \end{pmatrix}, \quad a > 0, \quad Y = \begin{pmatrix} 0 & \pi\\ -\pi & 0 \end{pmatrix}$$

Then

$$e^X = \begin{pmatrix} e^a & 0\\ 0 & e^{-a} \end{pmatrix}, \quad e^Y = \begin{pmatrix} -1 & 0\\ 0 & -1 \end{pmatrix}.$$

On the other hand,

$$e^X e^Y = \begin{pmatrix} -e^a & 0\\ 0 & -e^{-a} \end{pmatrix}$$

has trace $-e^a - e^{-a} = -2 \cosh a < -2$, so by problem 30 in Chapter 2, $e^X e^Y$ is not in the image of the exponential map. Thus there cannot be a $Z \in \mathfrak{sl}(2, \mathbb{R})$ with $e^X e^Y = e^Z$, and so the Campbell-Baker-Hausdorff formula can't be valid in this case.

Additional Problem. First suppose dim $\mathfrak{g} = 3$. Since \mathfrak{g} is nilpotent, its ascending central sequence terminates at \mathfrak{g} , and in particular, the center \mathfrak{z} of \mathfrak{g} is non-zero. If dim $\mathfrak{z} = 3$, \mathfrak{g} is abelian. If dim $\mathfrak{z} = 2$, that means \mathfrak{g} has a basis X, Y, Z with X and Y central. Since [Z, Z] = 0 and Z has 0 bracket with either X or Y, in fact Z is central also, so dim $\mathfrak{z} = 2$ is impossible. That leaves just one more case, dim $\mathfrak{z} = 1$. For any Lie algebra \mathfrak{g} , the bracket of two elements only depends on their classes mod \mathfrak{z} (since \mathfrak{z} has zero brackets with everything), so the bracket factors through an antisymmetric bilinear map $\mathfrak{g}/\mathfrak{z} \times \mathfrak{g}/\mathfrak{z} \to \mathfrak{g}$. The image is at most one-dimensional since if \dot{X} and \dot{Y} span $\mathfrak{g}/\mathfrak{z}$ and come from elements X and Y in $\mathfrak{g}, [X, X] = [Y, Y] = 0$ and [Y, X] = -[X, Y]. But if \mathfrak{z} has dimension 1, that means not every element of \mathfrak{g} is central, so there is at least one non-trivial bracket, say [X, Y]. On the other hand, the quotient Lie algebra $\mathfrak{g}/\mathfrak{z}$ is 2-dimensional. By a previous exercise, any non-abelian 2-dimensional Lie algebra has a basis T and W with [T, W] = W. So ad T has W as an eigenvector with eigenvalue 1 and so ad T is not nilpotent. Since $\mathfrak{g}/\mathfrak{z}$ is a quotient of a nilpotent Lie algebra, it is also nilpotent, and so $\mathfrak{g}/\mathfrak{z}$ must be abelian. That means $[\mathfrak{g}, \mathfrak{g}]$ is zero mod \mathfrak{z} , or $[\mathfrak{g}, \mathfrak{g}] \subseteq \mathfrak{z}$. So if $[X, Y] \neq 0, Z = [X, Y]$ spans \mathfrak{z} (since the latter was 1-dimensional) and \mathfrak{g} is Heisenberg.

Now suppose dim $\mathfrak{g} = 4$. Again, the center \mathfrak{z} must be non-zero, and $\mathfrak{g}/\mathfrak{z}$ must be nilpotent of smaller dimension than \mathfrak{g} . If dim $\mathfrak{z} = 4$, \mathfrak{g} is abelian. Just as in the case of dim $\mathfrak{g} = 3$, it is impossible for \mathfrak{z} to be of codimension 1. So dim \mathfrak{z} must be either 2 or 1. In the first case, dim $\mathfrak{z} = 2$, just as in the case of dim $\mathfrak{g} = 3$, $\mathfrak{g}/\mathfrak{z}$ is nilpotent of dimension 2 and thus abelian, which means $[\mathfrak{g}, \mathfrak{g}] \subseteq \mathfrak{z}$. So choose X and Y with [X, Y] = Z non-zero and central. Since dim $\mathfrak{z} = 2$, we can choose another central element W linearly independent of Z, and W has zero bracket with everything. So we see \mathfrak{g} has a basis X, Y, Z, W with [X, Y] = Z and no other non-trivial brackets, so \mathfrak{g} is a Lie algebra direct sum of a Heisenberg algebra with a one-dimensional Lie algebra (spanned by W).

There is just one more case, $\dim \mathfrak{z} = 1$, $\mathfrak{g}/\mathfrak{z}$ is nilpotent of dimension 3. In this case, $\mathfrak{g}/\mathfrak{z}$ can't be abelian, because if it were, we'd have $[\mathfrak{g},\mathfrak{g}] \subseteq \mathfrak{z}$, and the Lie bracket would be a skew-symmetric bilinear map $\mathfrak{g}/\mathfrak{z} \times \mathfrak{g}/\mathfrak{z} \to \mathfrak{z}$ with one-dimensional image, which would force it to be identically zero on a one-dimensional subspace of $\mathfrak{g}/\mathfrak{z}$ by dimension counting. This would result in \mathfrak{z} being 2-dimensional, a contradiction. So $\mathfrak{g}/\mathfrak{z}$

is a non-abelian nilpotent 3-dimensional Lie algebra, hence is Heisenberg. Now choose a standard basis \dot{X} , \dot{Y} , \dot{Z} of the Heisenberg Lie algebra $\mathfrak{g}/\mathfrak{z}$ and pull back to basis elements X, Y, Z of \mathfrak{g} . We have [X, Y] = Z mod \mathfrak{z} . Changing Z by something in the center \mathfrak{z} , we can always assume [X, Y] = Z. Since Z is not central in \mathfrak{g} (only in $\mathfrak{g}/\mathfrak{z}$), it has a non-trivial bracket with either X or Y. Without loss of generality we can assume it's with X. Then [X, Z] is zero mod \mathfrak{z} but non-zero, hence spans the one-dimensional center \mathfrak{z} . So we get the bracket relations [X, Y] = Z, [X, Z] = W with W central, as desired.