MATH 744, FALL 2010

 HOMEWORK ASSIGNMENT \#3, PARTIAL SOLUTIONSJONATHAN ROSENBERG

Hall, Chapter 3, Problem 9. Let

$$
X=\left(\begin{array}{cc}
a & 0 \\
0 & -a
\end{array}\right), \quad a>0, \quad Y=\left(\begin{array}{cc}
0 & \pi \\
-\pi & 0
\end{array}\right)
$$

Then

$$
e^{X}=\left(\begin{array}{cc}
e^{a} & 0 \\
0 & e^{-a}
\end{array}\right), \quad e^{Y}=\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right)
$$

On the other hand,

$$
e^{X} e^{Y}=\left(\begin{array}{cc}
-e^{a} & 0 \\
0 & -e^{-a}
\end{array}\right)
$$

has trace $-e^{a}-e^{-a}=-2 \cosh a<-2$, so by problem 30 in Chapter $2, e^{X} e^{Y}$ is not in the image of the exponential map. Thus there cannot be a $Z \in \mathfrak{s l}(2, \mathbb{R})$ with $e^{X} e^{Y}=e^{Z}$, and so the Campbell-Baker-Hausdorff formula can't be valid in this case.

Additional Problem. First suppose $\operatorname{dim} \mathfrak{g}=3$. Since \mathfrak{g} is nilpotent, its ascending central sequence terminates at \mathfrak{g}, and in particular, the center \mathfrak{z} of \mathfrak{g} is non-zero. If $\operatorname{dim} \mathfrak{z}=3, \mathfrak{g}$ is abelian. If $\operatorname{dim} \mathfrak{z}=2$, that means \mathfrak{g} has a basis X, Y, Z with X and Y central. Since $[Z, Z]=0$ and Z has 0 bracket with either X or Y, in fact Z is central also, so $\operatorname{dim} \mathfrak{z}=2$ is impossible. That leaves just one more case, $\operatorname{dim} \mathfrak{z}=1$. For any Lie algebra \mathfrak{g}, the bracket of two elements only depends on their classes mod \mathfrak{z} (since \mathfrak{z} has zero brackets with everything), so the bracket factors through an antisymmetric bilinear map $\mathfrak{g} / \mathfrak{z} \times \mathfrak{g} / \mathfrak{z} \rightarrow \mathfrak{g}$. The image is at most one-dimensional since if \dot{X} and \dot{Y} span $\mathfrak{g} / \mathfrak{z}$ and come from elements X and Y in $\mathfrak{g},[X, X]=[Y, Y]=0$ and $[Y, X]=-[X, Y]$. But if \mathfrak{z} has dimension 1 , that means not every element of \mathfrak{g} is central, so there is at least one non-trivial bracket, say $[X, Y]$. On the other hand, the quotient Lie algebra $\mathfrak{g} / \mathfrak{z}$ is 2-dimensional. By a previous exercise, any non-abelian 2-dimensional Lie algebra has a basis T and W with $[T, W]=W$. So ad T has W as an eigenvector with eigenvalue 1 and so $\operatorname{ad} T$ is not nilpotent. Since $\mathfrak{g} / \mathfrak{z}$ is a quotient of a nilpotent Lie algebra, it is also nilpotent, and so $\mathfrak{g} / \mathfrak{z}$ must be abelian. That means $[\mathfrak{g}, \mathfrak{g}]$ is zero mod \mathfrak{z}, or $[\mathfrak{g}, \mathfrak{g}] \subseteq \mathfrak{z}$. So if $[X, Y] \neq 0, Z=[X, Y]$ spans \mathfrak{z} (since the latter was 1-dimensional) and \mathfrak{g} is Heisenberg.

Now suppose $\operatorname{dim} \mathfrak{g}=4$. Again, the center \mathfrak{z} must be non-zero, and $\mathfrak{g} / \mathfrak{z}$ must be nilpotent of smaller dimension than \mathfrak{g}. If $\operatorname{dim} \mathfrak{z}=4, \mathfrak{g}$ is abelian. Just as in the case of $\operatorname{dim} \mathfrak{g}=3$, it is impossible for \mathfrak{z} to be of codimension 1. So $\operatorname{dim} \mathfrak{z}$ must be either 2 or 1 . In the first case, $\operatorname{dim} \mathfrak{z}=2$, just as in the case of $\operatorname{dim} \mathfrak{g}=3$, $\mathfrak{g} / \mathfrak{z}$ is nilpotent of dimension 2 and thus abelian, which means $[\mathfrak{g}, \mathfrak{g}] \subseteq \mathfrak{z}$. So choose X and Y with $[X, Y]=Z$ non-zero and central. Since $\operatorname{dim} \mathfrak{z}=2$, we can choose another central element W linearly independent of Z, and W has zero bracket with everything. So we see \mathfrak{g} has a basis X, Y, Z, W with $[X, Y]=Z$ and no other non-trivial brackets, so \mathfrak{g} is a Lie algebra direct sum of a Heisenberg algebra with a one-dimensional Lie algebra (spanned by W).

There is just one more case, $\operatorname{dim} \mathfrak{z}=1, \mathfrak{g} / \mathfrak{z}$ is nilpotent of dimension 3. In this case, $\mathfrak{g} / \mathfrak{z}$ can't be abelian, because if it were, we'd have $[\mathfrak{g}, \mathfrak{g}] \subseteq \mathfrak{z}$, and the Lie bracket would be a skew-symmetric bilinear map $\mathfrak{g} / \mathfrak{z} \times \mathfrak{g} / \mathfrak{z} \rightarrow \mathfrak{z}$ with one-dimensional image, which would force it to be identically zero on a one-dimensional subspace of $\mathfrak{g} / \mathfrak{z}$ by dimension counting. This would result in \mathfrak{z} being 2 -dimensional, a contradiction. So $\mathfrak{g} / \mathfrak{z}$
is a non-abelian nilpotent 3 -dimensional Lie algebra, hence is Heisenberg. Now choose a standard basis \dot{X}, \dot{Y}, \dot{Z} of the Heisenberg Lie algebra $\mathfrak{g} / \mathfrak{z}$ and pull back to basis elements X, Y, Z of \mathfrak{g}. We have $[X, Y]=Z$ $\bmod \mathfrak{z}$. Changing Z by something in the center \mathfrak{z}, we can always assume $[X, Y]=Z$. Since Z is not central in \mathfrak{g} (only in $\mathfrak{g} / \mathfrak{z}$), it has a non-trivial bracket with either X or Y. Without loss of generality we can assume it's with X. Then $[X, Z]$ is zero $\bmod \mathfrak{z}$ but non-zero, hence spans the one-dimensional center \mathfrak{z}. So we get the bracket relations $[X, Y]=Z,[X, Z]=W$ with W central, as desired.

