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HOMEWORK ASSIGNMENT #4, PARTIAL SOLUTIONS

JONATHAN ROSENBERG

Ch. 4, Problem #15.

(a) Checking that P1 and P2 are intertwining maps is straightforward:

P1(g · (v1, v2)) = P1(g · v1, g · v2) = g · v1 = g · P1(v2, v2),

and similarly for P2. If U is irreducible, Schur’s Lemma thus implies that P1|U is either an isomorphism or
0, and similarly for P2|U . If P1|U = 0, that means U ⊆ V2, and since U and V2 are both irreducible, they
must be equal. Similarly, if P2|U = 0, then U = V1. So we just have to rule out the case where P1|U 6= 0 and
P2|U 6= 0. But in this case, we’ve seen that P1|U and P2|U are both isomorphisms. In other words, U ∼= V1

and U ∼= V2. Since V1 6∼= V2, this is impossible.
(b) Suppose U is a proper, nonzero invariant subspace of V1 ⊕V2. By Exercise 13, U contains an irreducible
invariant subspace. By (a), this is either V1 or V2. Suppose, say, that U ) V1. Let (v1, v2) ∈ U with v2 6= 0.
(This is possible since U is strictly bigger than V1.) Since V1 ⊂ U , (v1, 0) ∈ U , so (v1, v2)− (v1, 0) = (0, v2) ∈
U . But the invariant subspace generated by (0, v2) is all of V2, so U = V1 ⊕V2, contradicting the assumption
that U was proper.

Additional Problem #1. By Schur’s Lemma, the commuting ring of π on V is just the scalar multiples
of the identity. On the other hand, since the representation of G on W is trivial, the commuting ring of this
representation is all of EndC W , isomorphic to Mr(C) (the r × r matrices with entries in C). We claim the
commuting ring of the representation π ⊗ 1W on V ⊗ W is just C · 1V ⊗ EndC W . One direction is trivial
— it is clear that anything of the form 1V ⊗ T commutes with the representation. So we just need to show
we’ve exhausted everything.

If e1, · · · en is a basis for W , then a basis for EndW is the set of rank-one operators eij (sending ej

to ei and killing all ek for k 6= j). Thus any linear operator T in End(V ⊗ W ) has a unique expansion as
T =

∑

i,j Tij⊗eij , with Tij ∈ End(V ). Suppose T commutes with all π(g)⊗1W . That means [T, π(g)⊗1W ] =
∑

i,j [Tij , π(g)] ⊗ eij = 0 for all g ∈ G. Since the eij are linearly independent, [Tij , π(g)] = 0 for all i, j and

g ∈ G, so each Tij is a scalar multiple of the identity, and T =
∑

i,j cij1V ⊗ eij for some scalars cij , i.e.,
T ∈ C · 1V ⊗ EndC W .

When it comes to invariant subspaces of V ⊗W , one has obvious invariant subspaces of the form V ⊗U ,
for U a subspace of W . To show these are all the invariant subspaces, it is easiest to think of V ⊗ W as

V r =

r
︷ ︸︸ ︷

V ⊕ · · · ⊕ V . Then a vector in V ⊗ W is just an r-tuple of vectors in V . We’ll prove the result by
induction on r and think of V r+1 as V r ⊕ V . Let Z be an invariant subspace of V r+1. Projection p onto
the final summand of V is G-equivariant, and so sends Z to an invariant subspace of V , which is either 0
or V . If it’s 0, that means we can think of Z as embedded in V r and the result follows from the inductive
hypothesis. If p(Z) = V , we still have Z ∩ ker p ⊆ V r, so Z ∩ ker p = V ⊗ U1 with U1 a subspace of Cr, by
the inductive hypothesis. Now among all the invariant subspaces Z1 ⊆ Z with p(Z1) 6= 0, there must be a
minimal one (say by Zorn’s Lemma, though if V is finite-dimensional, you don’t need it). This Z1 has to be
irreducible, since if it weren’t, we could contradict minimality. So p|Z1

is an isomorphism. Choose v 6= 0 in
V and take its inverse image in Z1, which must be of the form (v1, · · · , vr, v). The fact that this generates
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Z1, isomorphic to V , forces v1, · · · , vr to be multiples λ1v, · · · , λrv of v. (We’ll see why in a moment, but
let’s assume this for now.) Thus Z1 = V ⊗ C · (λ1, · · · , λr, 1), and

Z = V ⊗ (U1 × {0}) + V ⊗ C · (λ1, · · · , λr, 1) = V ⊗ (U1 × {0} ⊕ C · (λ1, · · · , λr, 1)) = V ⊗ U

for some U .
Finally, we need to see why v1, · · · , vr are all multiples of v. If say vj were not a multiple of v, then since

V is irreducible, there would be a linear transformation T in the algebra generated by the action of G on V

that kills v but not vj . Then Z1 would contain (Tv1, · · · , T vr, T v), which maps to 0 under p (since Tv = 0)
but is nonzero since Tvj 6= 0. This contradicts the assumption that p|Z1

is an isomorphism.

Additional Problem #2. The weights of π are ±1, and the weights of π ⊗ π are obtained by adding
weights of the tensor factors, so are of the form ±1±1. Thus ±2 each occur once and 0 occurs twice (as 1−1
and as −1 + 1). Since 2 is the highest weight, we must have a summand isomorphic to V2 (the complexified
adjoint representation). Subtracting off its weights, we still have the weight 0, so there is another summand
of V0. (Alternatively, the trivial representation occurs as a summand since π is self-contragredient, and
π ⊗ π∗ ∼= HomC(π, π) contains a trivial summand, corresponding to the identity map π → π.)

Similarly, the weights of π ⊗ π ⊗ π are obtained by adding weights of the three tensor factors, so are all
of the form ±1 ± 1 ± 1. Thus 3 and −3 each occur once, and 1 and −1 each occur three times (since we
can have 1 + 1 − 1, 1 − 1 + 1, and −1 + 1 + 1, etc.). Since the weights of the irreducible representation Vn

are n, n− 2, · · · ,−n and the weights determine the representation, the representation must be equivalent to
V3 ⊕ V1 ⊕ V1, which is the only representation with the correct weights. (To put it another way, since 3 is
the highest weight, the representation contains a copy of V3. Taking out the weights of V3, what remains
are two copies of the weights ±1 of V1.) The dimension count is right since (3 + 1) + 2 · (1 + 1) = 23 = 8.


