MATH 744, FALL 2010
 HOMEWORK ASSIGNMENT \#4, PARTIAL SOLUTIONS

JONATHAN ROSENBERG

Ch. 4, Problem \#15.
(a) Checking that P_{1} and P_{2} are intertwining maps is straightforward:

$$
P_{1}\left(g \cdot\left(v_{1}, v_{2}\right)\right)=P_{1}\left(g \cdot v_{1}, g \cdot v_{2}\right)=g \cdot v_{1}=g \cdot P_{1}\left(v_{2}, v_{2}\right)
$$

and similarly for P_{2}. If U is irreducible, Schur's Lemma thus implies that $\left.P_{1}\right|_{U}$ is either an isomorphism or 0 , and similarly for $\left.P_{2}\right|_{U}$. If $\left.P_{1}\right|_{U}=0$, that means $U \subseteq V_{2}$, and since U and V_{2} are both irreducible, they must be equal. Similarly, if $\left.P_{2}\right|_{U}=0$, then $U=V_{1}$. So we just have to rule out the case where $\left.P_{1}\right|_{U} \neq 0$ and $\left.P_{2}\right|_{U} \neq 0$. But in this case, we've seen that $\left.P_{1}\right|_{U}$ and $\left.P_{2}\right|_{U}$ are both isomorphisms. In other words, $U \cong V_{1}$ and $U \cong V_{2}$. Since $V_{1} \nsubseteq V_{2}$, this is impossible.
(b) Suppose U is a proper, nonzero invariant subspace of $V_{1} \oplus V_{2}$. By Exercise $13, U$ contains an irreducible invariant subspace. By (a), this is either V_{1} or V_{2}. Suppose, say, that $U \supsetneq V_{1}$. Let $\left(v_{1}, v_{2}\right) \in U$ with $v_{2} \neq 0$. (This is possible since U is strictly bigger than V_{1}.) Since $V_{1} \subset U,\left(v_{1}, 0\right) \in U$, so $\left(v_{1}, v_{2}\right)-\left(v_{1}, 0\right)=\left(0, v_{2}\right) \in$ U. But the invariant subspace generated by $\left(0, v_{2}\right)$ is all of V_{2}, so $U=V_{1} \oplus V_{2}$, contradicting the assumption that U was proper.

Additional Problem \#1. By Schur's Lemma, the commuting ring of π on V is just the scalar multiples of the identity. On the other hand, since the representation of G on W is trivial, the commuting ring of this representation is all of $\operatorname{End}_{\mathbb{C}} W$, isomorphic to $M_{r}(\mathbb{C})$ (the $r \times r$ matrices with entries in \mathbb{C}). We claim the commuting ring of the representation $\pi \otimes 1_{W}$ on $V \otimes W$ is just $\mathbb{C} \cdot 1_{V} \otimes \operatorname{End}_{\mathbb{C}} W$. One direction is trivial - it is clear that anything of the form $1_{V} \otimes T$ commutes with the representation. So we just need to show we've exhausted everything.

If $e_{1}, \cdots e_{n}$ is a basis for W, then a basis for $\operatorname{End} W$ is the set of rank-one operators $e_{i j}$ (sending e_{j} to e_{i} and killing all e_{k} for $\left.k \neq j\right)$. Thus any linear operator T in $\operatorname{End}(V \otimes W)$ has a unique expansion as $T=\sum_{i, j} T_{i j} \otimes e_{i j}$, with $T_{i j} \in \operatorname{End}(V)$. Suppose T commutes with all $\pi(g) \otimes 1_{W}$. That means $\left[T, \pi(g) \otimes 1_{W}\right]=$ $\sum_{i, j}\left[T_{i j}, \pi(g)\right] \otimes e_{i j}=0$ for all $g \in G$. Since the $e_{i j}$ are linearly independent, $\left[T_{i j}, \pi(g)\right]=0$ for all i, j and $g \in G$, so each $T_{i j}$ is a scalar multiple of the identity, and $T=\sum_{i, j} c_{i j} 1_{V} \otimes e_{i j}$ for some scalars $c_{i j}$, i.e., $T \in \mathbb{C} \cdot 1_{V} \otimes \operatorname{End}_{\mathbb{C}} W$.

When it comes to invariant subspaces of $V \otimes W$, one has obvious invariant subspaces of the form $V \otimes U$, for U a subspace of W. To show these are all the invariant subspaces, it is easiest to think of $V \otimes W$ as
$V^{r}=\overbrace{V \oplus \cdots \oplus V}^{r}$. Then a vector in $V \otimes W$ is just an r-tuple of vectors in V. We'll prove the result by induction on r and think of V^{r+1} as $V^{r} \oplus V$. Let Z be an invariant subspace of V^{r+1}. Projection p onto the final summand of V is G-equivariant, and so sends Z to an invariant subspace of V, which is either 0 or V. If it's 0 , that means we can think of Z as embedded in V^{r} and the result follows from the inductive hypothesis. If $p(Z)=V$, we still have $Z \cap \operatorname{ker} p \subseteq V^{r}$, so $Z \cap \operatorname{ker} p=V \otimes U_{1}$ with U_{1} a subspace of \mathbb{C}^{r}, by the inductive hypothesis. Now among all the invariant subspaces $Z_{1} \subseteq Z$ with $p\left(Z_{1}\right) \neq 0$, there must be a minimal one (say by Zorn's Lemma, though if V is finite-dimensional, you don't need it). This Z_{1} has to be irreducible, since if it weren't, we could contradict minimality. So $\left.p\right|_{Z_{1}}$ is an isomorphism. Choose $v \neq 0$ in V and take its inverse image in Z_{1}, which must be of the form $\left(v_{1}, \cdots, v_{r}, v\right)$. The fact that this generates
Z_{1}, isomorphic to V, forces v_{1}, \cdots, v_{r} to be multiples $\lambda_{1} v, \cdots, \lambda_{r} v$ of v. (We'll see why in a moment, but let's assume this for now.) Thus $Z_{1}=V \otimes \mathbb{C} \cdot\left(\lambda_{1}, \cdots, \lambda_{r}, 1\right)$, and

$$
Z=V \otimes\left(U_{1} \times\{0\}\right)+V \otimes \mathbb{C} \cdot\left(\lambda_{1}, \cdots, \lambda_{r}, 1\right)=V \otimes\left(U_{1} \times\{0\} \oplus \mathbb{C} \cdot\left(\lambda_{1}, \cdots, \lambda_{r}, 1\right)\right)=V \otimes U
$$

for some U.
Finally, we need to see why v_{1}, \cdots, v_{r} are all multiples of v. If say v_{j} were not a multiple of v, then since V is irreducible, there would be a linear transformation T in the algebra generated by the action of G on V that kills v but not v_{j}. Then Z_{1} would contain ($T v_{1}, \cdots, T v_{r}, T v$), which maps to 0 under p (since $T v=0$) but is nonzero since $T v_{j} \neq 0$. This contradicts the assumption that $\left.p\right|_{Z_{1}}$ is an isomorphism.

Additional Problem \#2. The weights of π are ± 1, and the weights of $\pi \otimes \pi$ are obtained by adding weights of the tensor factors, so are of the form $\pm 1 \pm 1$. Thus ± 2 each occur once and 0 occurs twice (as $1-1$ and as $-1+1$). Since 2 is the highest weight, we must have a summand isomorphic to V_{2} (the complexified adjoint representation). Subtracting off its weights, we still have the weight 0 , so there is another summand of V_{0}. (Alternatively, the trivial representation occurs as a summand since π is self-contragredient, and $\pi \otimes \pi^{*} \cong \operatorname{Hom}_{\mathbb{C}}(\pi, \pi)$ contains a trivial summand, corresponding to the identity map $\pi \rightarrow \pi$.)

Similarly, the weights of $\pi \otimes \pi \otimes \pi$ are obtained by adding weights of the three tensor factors, so are all of the form $\pm 1 \pm 1 \pm 1$. Thus 3 and -3 each occur once, and 1 and -1 each occur three times (since we can have $1+1-1,1-1+1$, and $-1+1+1$, etc.). Since the weights of the irreducible representation V_{n} are $n, n-2, \cdots,-n$ and the weights determine the representation, the representation must be equivalent to $V_{3} \oplus V_{1} \oplus V_{1}$, which is the only representation with the correct weights. (To put it another way, since 3 is the highest weight, the representation contains a copy of V_{3}. Taking out the weights of V_{3}, what remains are two copies of the weights ± 1 of V_{1}.) The dimension count is right since $(3+1)+2 \cdot(1+1)=2^{3}=8$.

