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HOMEWORK ASSIGNMENT #5, PARTIAL SOLUTIONS

JONATHAN ROSENBERG

Ch. 5, Problem #2.

Suppose v1 · · · , vn is a basis for V consisting of weight vectors with weights λj . Let v∗

1 , · · · , v∗n be the
dual basis for the dual space V ∗. By definition, π∗(X) = −π(X)t acting on the dual space. So if X ∈ h, we
have

〈vj , π
∗(X)v∗

k〉 = −〈vj , π
t(X)v∗

k〉

= −〈π(X)vj , v
∗

k〉 = −λj(X)〈vj , v
∗

k〉 = −λj(X)δjk = −λk(X)δjk.

By the definition of the dual basis, that means π∗(X)v∗

k = −λk(X)v∗

k, so v∗

k is a weight vector with weight
−λk.

Ch. 5, Problem #6.

The more interesting part is the decomposition of V ⊗ V , where we take two copies of the standard
representation V = C

3 with highest weight (1, 0). The general fact is that for any group G and any
representation V , V ⊗ V always decomposes canonically into a direct sum of the symmetric tensors S2V

and the antisymmetric tensors
∧2

V . Those pieces in general might still not be irreducible, but in this case
they are. Since V has dimension 3, S2V has the same dimension as the space of homogeneous quadratic
polynomials in 3 variables, or 6, and

∧2
V has dimension

(

3
2

)

= 3. In fact,
∧2

V is canonically isomorphic to

the dual space V ∗, since the wedge product gives a dual pairing between V and
∧2

V with values in
∧3

V ∼= C.
So one component of V ⊗ V is the 3-dimensional irreducible representation V ∗, with highest weight (0, 1).
Another component is S2V , which has as highest weight (2, 0), corresponding to the (symmetric) tensor
product v ⊗ v, v a highest weight vector in V . Recall that the weights of V are (1, 0), (−1, 1), and (0,−1),
while the weights of V ∗ are (0, 1), (1,−1), and (−1, 0). The weights of V ⊗ V are all possible sums of two
weights of V , so these are (2, 0), (−2, 2), (0,−2), each with multiplicity 1, and (1, 0) + (−1, 1) = (0, 1),
(1, 0) + (0,−1) = (1,−1), (−1, 1) + (0,−1) = (−1, 0), each with multiplicity 2 (since for each pair of distinct
weight vectors, we can take the tensor product in either order). After pulling out the weights (0, 1), (1,−1),
and (−1, 0) of V ∗, we have six weights, each with multiplicity 1, and these are all weights of the irreducible
representation with highest weight (2, 0). So V ⊗ V ∼= V(2,0) ⊕ V(0,1), with one irreducible summand of
dimension 6 and one of dimension 3.

Ch. 5, Problem #12.

(a) We need to show that there is no g ∈ G with Ad(g)(X) = −X for all X ∈ h. One quick method is to
use the fact that the adjoint action is conjugation of matrices, i.e., Ad(g)(X) = gXg−1. So if X is invertible,
which we can arrange (H1 and H2 are not invertible, but 2H1 + H2 is invertible, for instance), then we get
det Ad(g)(X) = det(gXg−1) = detX = det(−X) = −det X, which is a contradiction since detX 6= 0. This
same argument shows −1 does not lie in the Weyl group of SU(n) for any odd n.

(b) The irreducible representation V with highest weight (m,n), m, n ≥ 0, turns out to have weights
invariant under multiplication by −1 if and only if m = n. We can see this as follows. First suppose the
highest weight is of the form (m,m), m ≥ 0. Since the highest weight is invariant under interchange of the
two coordinates, so is the set of all the weights. So if (n1, n2) is a weight of V , so is λ = (n2, n1). But the
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weights are also invariant under the Weyl group, which is generated by the permutations s1 = (1, 2) and
s2 = (2, 3). Note that s1(H1) = −H1 and s1(H2) = diag(1, 0,−1) = H1 + H2. Similarly s2(H2) = −H2 and
s2(H1) = H1 + H2. The action of w = s1s2s1 on λ is as follows:

w · λ(H1) = λ(w−1 · H1)

= λ(s1s2s1 · H1) = −λ(s1s2 · H1)

= −λ(s1 · (H1 + H2)) = −λ(−H1 + (H1 + H2))

= −λ(H2) = −n1.

w · λ(H2) = λ(w−1 · H2)

= λ(s1s2s1 · H2) = λ(s1s2 · (H1 + H2))

= λ(s1 · ((H1 + H2) − H2)) = λ(s1 · H1)

= −λ(H1) = −n2.

Thus w sends λ to −(n1, n2), and the weights of V are invariant under multiplication by −1.
In the other direction, suppose the weights are invariant under −1. Then if (n1, n2) is a weight, (−n1,−n2)

is also a weight. As we just saw, this is conjugate under w ∈ W to (n2, n1). So (n2, n1) is also a weight.
In other words, the weights are invariant under interchange of the two coordinates. Now if (m,n) is the
highest weight of an irreducible representation, then w ·(m,n) = (−n,−m) is the lowest weight, and (n,m) =
−w · (m,n) is also a highest weight. Since the highest weight is unique, it has to be of the form (m,m).


