MATH 744, FALL 2010 HOMEWORK ASSIGNMENT \#5, PARTIAL SOLUTIONS

JONATHAN ROSENBERG

Ch. 5, Problem \#2.

Suppose $v_{1} \cdots, v_{n}$ is a basis for V consisting of weight vectors with weights λ_{j}. Let $v_{1}^{*}, \cdots, v_{n}^{*}$ be the dual basis for the dual space V^{*}. By definition, $\pi^{*}(X)=-\pi(X)^{t}$ acting on the dual space. So if $X \in \mathfrak{h}$, we have

$$
\begin{aligned}
\left\langle v_{j}, \pi^{*}(X) v_{k}^{*}\right\rangle & =-\left\langle v_{j}, \pi^{t}(X) v_{k}^{*}\right\rangle \\
& =-\left\langle\pi(X) v_{j}, v_{k}^{*}\right\rangle=-\lambda_{j}(X)\left\langle v_{j}, v_{k}^{*}\right\rangle=-\lambda_{j}(X) \delta_{j k}=-\lambda_{k}(X) \delta_{j k}
\end{aligned}
$$

By the definition of the dual basis, that means $\pi^{*}(X) v_{k}^{*}=-\lambda_{k}(X) v_{k}^{*}$, so v_{k}^{*} is a weight vector with weight $-\lambda_{k}$.

Ch. 5, Problem \#6.

The more interesting part is the decomposition of $V \otimes V$, where we take two copies of the standard representation $V=\mathbb{C}^{3}$ with highest weight $(1,0)$. The general fact is that for any group G and any representation $V, V \otimes V$ always decomposes canonically into a direct sum of the symmetric tensors $S^{2} V$ and the antisymmetric tensors $\bigwedge^{2} V$. Those pieces in general might still not be irreducible, but in this case they are. Since V has dimension $3, S^{2} V$ has the same dimension as the space of homogeneous quadratic polynomials in 3 variables, or 6 , and $\bigwedge^{2} V$ has dimension $\binom{3}{2}=3$. In fact, $\bigwedge^{2} V$ is canonically isomorphic to the dual space V^{*}, since the wedge product gives a dual pairing between V and $\bigwedge^{2} V$ with values in $\bigwedge^{3} V \cong \mathbb{C}$. So one component of $V \otimes V$ is the 3-dimensional irreducible representation V^{*}, with highest weight $(0,1)$. Another component is $S^{2} V$, which has as highest weight $(2,0)$, corresponding to the (symmetric) tensor product $v \otimes v, v$ a highest weight vector in V. Recall that the weights of V are $(1,0),(-1,1)$, and $(0,-1)$, while the weights of V^{*} are $(0,1),(1,-1)$, and $(-1,0)$. The weights of $V \otimes V$ are all possible sums of two weights of V, so these are $(2,0),(-2,2),(0,-2)$, each with multiplicity 1 , and $(1,0)+(-1,1)=(0,1)$, $(1,0)+(0,-1)=(1,-1),(-1,1)+(0,-1)=(-1,0)$, each with multiplicity 2 (since for each pair of distinct weight vectors, we can take the tensor product in either order). After pulling out the weights $(0,1),(1,-1)$, and $(-1,0)$ of V^{*}, we have six weights, each with multiplicity 1 , and these are all weights of the irreducible representation with highest weight $(2,0)$. So $V \otimes V \cong V_{(2,0)} \oplus V_{(0,1)}$, with one irreducible summand of dimension 6 and one of dimension 3 .

Ch. 5, Problem \#12.

(a) We need to show that there is no $g \in G$ with $\operatorname{Ad}(g)(X)=-X$ for all $X \in \mathfrak{h}$. One quick method is to use the fact that the adjoint action is conjugation of matrices, i.e., $\operatorname{Ad}(g)(X)=g X g^{-1}$. So if X is invertible, which we can arrange (H_{1} and H_{2} are not invertible, but $2 H_{1}+H_{2}$ is invertible, for instance), then we get $\operatorname{det} \operatorname{Ad}(g)(X)=\operatorname{det}\left(g X g^{-1}\right)=\operatorname{det} X=\operatorname{det}(-X)=-\operatorname{det} X$, which is a contradiction since $\operatorname{det} X \neq 0$. This same argument shows -1 does not lie in the Weyl group of $S U(n)$ for any odd n.
(b) The irreducible representation V with highest weight (m, n), $m, n \geq 0$, turns out to have weights invariant under multiplication by -1 if and only if $m=n$. We can see this as follows. First suppose the highest weight is of the form $(m, m), m \geq 0$. Since the highest weight is invariant under interchange of the two coordinates, so is the set of all the weights. So if $\left(n_{1}, n_{2}\right)$ is a weight of V, so is $\lambda=\left(n_{2}, n_{1}\right)$. But the
weights are also invariant under the Weyl group, which is generated by the permutations $s_{1}=(1,2)$ and $s_{2}=(2,3)$. Note that $s_{1}\left(H_{1}\right)=-H_{1}$ and $s_{1}\left(H_{2}\right)=\operatorname{diag}(1,0,-1)=H_{1}+H_{2}$. Similarly $s_{2}\left(H_{2}\right)=-H_{2}$ and $s_{2}\left(H_{1}\right)=H_{1}+H_{2}$. The action of $w=s_{1} s_{2} s_{1}$ on λ is as follows:

$$
\begin{aligned}
w \cdot \lambda\left(H_{1}\right) & =\lambda\left(w^{-1} \cdot H_{1}\right) \\
& =\lambda\left(s_{1} s_{2} s_{1} \cdot H_{1}\right)=-\lambda\left(s_{1} s_{2} \cdot H_{1}\right) \\
& =-\lambda\left(s_{1} \cdot\left(H_{1}+H_{2}\right)\right)=-\lambda\left(-H_{1}+\left(H_{1}+H_{2}\right)\right) \\
& =-\lambda\left(H_{2}\right)=-n_{1} . \\
w \cdot \lambda\left(H_{2}\right) & =\lambda\left(w^{-1} \cdot H_{2}\right) \\
& =\lambda\left(s_{1} s_{2} s_{1} \cdot H_{2}\right)=\lambda\left(s_{1} s_{2} \cdot\left(H_{1}+H_{2}\right)\right) \\
& =\lambda\left(s_{1} \cdot\left(\left(H_{1}+H_{2}\right)-H_{2}\right)\right)=\lambda\left(s_{1} \cdot H_{1}\right) \\
& =-\lambda\left(H_{1}\right)=-n_{2} .
\end{aligned}
$$

Thus w sends λ to $-\left(n_{1}, n_{2}\right)$, and the weights of V are invariant under multiplication by -1 .
In the other direction, suppose the weights are invariant under -1 . Then if $\left(n_{1}, n_{2}\right)$ is a weight, $\left(-n_{1},-n_{2}\right)$ is also a weight. As we just saw, this is conjugate under $w \in W$ to $\left(n_{2}, n_{1}\right)$. So (n_{2}, n_{1}) is also a weight. In other words, the weights are invariant under interchange of the two coordinates. Now if (m, n) is the highest weight of an irreducible representation, then $w \cdot(m, n)=(-n,-m)$ is the lowest weight, and $(n, m)=$ $-w \cdot(m, n)$ is also a highest weight. Since the highest weight is unique, it has to be of the form (m, m).

