MATH 744, FALL 2010
 HOMEWORK ASSIGNMENT \#6 SOLUTIONS

JONATHAN ROSENBERG

(a) \mathfrak{h} is a solvable ideal in \mathfrak{g}, so $[X, \mathfrak{h}] \subset \mathfrak{h}$, and $\mathfrak{h}+\mathbb{C} X$ contains \mathfrak{h} as an ideal of codimension 1 , with $(\mathfrak{h}+\mathbb{C} X) / \mathfrak{h}$ one-dimensional and abelian. Since the class of solvable Lie algebras is closed under extensions, $\mathfrak{h}+\mathbb{C} X$ is solvable. Thus by Lie's Theorem, there is a basis for V (possibly depending on X) with respect to which $\mathfrak{h}+\mathbb{C} X$ acts by upper-triangular matrices, and $[X, \mathfrak{h}]$ acts by strictly upper-triangular matrices. Thus if $Y, Z \in \mathfrak{h}, Y$ is upper-triangular, $[X, Z]$ is strictly upper-triangular, and the product $Y[X, Z]$ is strictly upper-triangular, hence nilpotent, and $\operatorname{Tr}_{V}(Y[X, Z])=0$.
(b) Let \mathfrak{h} be the radical of \mathfrak{g} and assume the trace form H is nondegenerate. By (a), $H(Y,[X, Z])=0$ for $Y, Z \in \mathfrak{h}, X \in \mathfrak{g}$. Thus $H([Y, Z], X)=H(Y,[Z, X])=0$, and $[\mathfrak{h}, \mathfrak{h}]$ is orthogonal to everything in \mathfrak{g}, which by nondegeneracy means that $[\mathfrak{h}, \mathfrak{h}]=0$. In other words, \mathfrak{h} is abelian.
(c) Let \mathfrak{h} be the radical of \mathfrak{g}. By (b), \mathfrak{h} is abelian, and by (a), $[\mathfrak{g}, \mathfrak{h}] \subseteq \mathfrak{h} \cap \mathfrak{h}{ }^{\perp}$, where the orthogonal complement is taken with respect to H. Let $\mathfrak{s}=\mathfrak{h}^{\perp}$. By the associativity property $H([Y, Z], X)=$ $H(Y,[Z, X])$ with $Y \in \mathfrak{s}, Z \in \mathfrak{g}$, and $X \in \mathfrak{h}, \mathfrak{s}$ is an ideal. Let \mathfrak{r} be the radical of \mathfrak{s}. This is a characteristic ideal in the ideal \mathfrak{s}, so it is a solvable ideal of \mathfrak{g}. Since any solvable ideal lies in the radical, $\mathfrak{r} \subseteq \mathfrak{h}$, but also $\mathfrak{r} \subseteq \mathfrak{s}=\mathfrak{h}^{\perp}$, so $\mathfrak{r} \subseteq \mathfrak{h} \cap \mathfrak{h}^{\perp}$. Thus assuming that $\mathfrak{h} \cap \mathfrak{h}^{\perp}=0$, this will imply both that $\mathfrak{g}=\mathfrak{h} \oplus \mathfrak{s}$ and that \mathfrak{s} is semisimple. So \mathfrak{h} is central and \mathfrak{g} is reductive.
(d) If $\mathfrak{g}=\mathfrak{g l}(V)=\operatorname{End}(V)$, then \mathfrak{g} is reductive but not semisimple, since it has a one-dimensional center (the multiples of the identity matrix). The form H is non-degenerate on \mathfrak{g} since if $e_{i j}$ is the matrix with a 1 in the (i, j)-entry and 0 's everywhere else, then

$$
H\left(e_{i j}, e_{k l}\right)=\operatorname{Tr}\left(e_{i j} e_{k l}\right)=\operatorname{Tr}\left(\delta_{j k} e_{i l}\right)=\delta_{j k} \delta_{i l}
$$

Thus H is nondegenerate, with $\left\{e_{j i}\right\}$ the basis dual to $\left\{e_{i j}\right\}$. Note that H is also nondegenerate on the center, since $H(1,1)=\operatorname{dim} V$.
(e) If \mathfrak{g} is semisimple, it is a direct sum of simple ideals \mathfrak{s}_{i}. For each $i, \mathfrak{s}_{i} \cap \mathfrak{s}_{i}^{\perp}$ is an ideal in \mathfrak{s}_{i}, hence since \mathfrak{s}_{i} has no nontrivial ideals, must be either 0 (meaning H is nondegenerate on \mathfrak{s}_{i}) or all of \mathfrak{s}_{i}. But if there is some \mathfrak{s}_{i} for which $\mathfrak{s}_{i} \cap \mathfrak{s}_{i}^{\perp}=\mathfrak{s}_{i}$, then $\operatorname{Tr}_{V}(X Y)=0$ for all $X, Y \in \mathfrak{s}_{i}$, and by Cartan's Criterion, \mathfrak{s}_{i} is solvable, a contradiction. Hence H is nondegenerate on each \mathfrak{s}_{i}, and so is nondegenerate on all of \mathfrak{g}.

