MATH 744, FALL 2010 HOMEWORK ASSIGNMENT #7 SOLUTIONS

JONATHAN ROSENBERG

(a) Let $\mathfrak{g} = \mathfrak{sl}(n, \mathbb{C})$. Verify that \mathfrak{g} is simple of dimension $n^2 - 1$, with the subalgebra \mathfrak{h} of diagonal matrices of trace 0 as a Cartan subalgebra. Find all the roots α (there are $n^2 - n$ of them) and for each one compute the corresponding element H_{α} . In what way does this example generalize what we did for SU(3)? Solution. Let $\mathfrak{g} = \mathfrak{sl}(n, \mathbb{C})$ and let \mathfrak{h} be the diagonal matrices in \mathfrak{g} . As usual, let e_{ij} be the matrix with a 1 in the (i, j)-entry and 0's everywhere else, so that

(1)
$$\begin{cases} [e_{ij}, e_{kl}] = e_{ij}e_{kl} - e_{kl}e_{ij} = \delta_{jk}e_{il} - \delta_{il}e_{kj} \\ [e_{ii} - e_{jj}, e_{kl}] = (\delta_{ik} - \delta_{il} - \delta_{jk} + \delta_{jl})e_{kl}. \end{cases}$$

Thus \mathfrak{h} is maximal abelian, and of course it consists of semisimple elements (since all elements of \mathfrak{h} are diagonal), so it's a Cartan subalgebra. Note that dim $\mathfrak{h} = n - 1$ and dim $\mathfrak{g} = n^2 - 1$.

To show \mathfrak{g} is simple, first let $\mathfrak{g}_{ij} = \mathbb{C}e_{ij}$ for $i \neq j$. There are $n^2 - n$ of these one-dimensional subspaces, and they are eigenspaces for the adjoint action of \mathfrak{h} by (1). So these are the root spaces, and the roots can be identified with pairs (i, j) with $1 \leq i, j \leq n, i \neq j$. These act as linear functionals on \mathfrak{h} by $\alpha_{(i,j)}(\operatorname{diag}(x_1, \dots, x_n)) = x_i - x_j$. Given any ideal \mathfrak{s} in \mathfrak{g} , it must be normalized by \mathfrak{h} , so \mathfrak{s} is the direct sum of $\mathfrak{s} \cap \mathfrak{h}$ with a sum of root spaces. We already know $\mathfrak{sl}(2, \mathbb{C})$ is simple, so assume n > 2. If \mathfrak{s} contains the root space $\mathfrak{g}_{ij}, i \neq j$, then it contains $[\mathfrak{g}_{ij}, \mathfrak{g}_{jk}] = \mathfrak{g}_{ik}$ for all $k \neq i, j$, and similarly it contains $[\mathfrak{g}_{ij}, \mathfrak{g}_{ki}] = \mathfrak{g}_{kj}$ for all $k \neq i, j$. Then \mathfrak{s} in fact contains every root space, since we can get to every root space by a chain of such brackets. Then it contains all of \mathfrak{h} , since $[\mathfrak{g}_{ij}, \mathfrak{g}_{ji}]$ contains $e_{ii} - e_{jj}$, and such elements span \mathfrak{h} . On the other hand, if \mathfrak{s} contains a non-zero element H of \mathfrak{h} , then $\alpha(H) \neq 0$ for some root, and then \mathfrak{s} contains the root space \mathfrak{g}_{α} , since $[H, \mathfrak{g}_{\alpha}] = \alpha(H)\mathfrak{g}_{\alpha} = \mathfrak{g}_{\alpha}$. So \mathfrak{g} is simple.

Next, pick $\alpha = \alpha_{(i,j)}$ with $i \neq j$. The element H_{α} must be a multiple of $[e_{ij}, e_{ji}] = e_{ii} - e_{jj}$, and since $[e_{ii} - e_{jj}, e_{ij}] = 2e_{ij}$, $H_{\alpha} = e_{ii} - e_{jj}$. So the elements H_{α} generalize the elements $e_{11} - e_{22}$ and $e_{22} - e_{33}$ that showed up in the theory of SU(3).

(b) Continuing with Exercise (a) above, show that one gets a system of n-1 simple roots i associated to the pairs (i, i+1), i < n. Compute the Killing form B restricted to \mathfrak{h} , by computing $B(H_{\alpha_i}, H_{\alpha_j})$ for all the simple roots with $1 \leq i, j \leq n-1$. You should find that the matrix is tridiagonal. **Solution.** Now let's show that the pairs (i, i+1) with $1 \leq i \leq n-1$ index a set of simple roots, corresponding to the set of positive roots $\{\alpha_{(i,j)} \mid 1 \leq i < j \leq n\}$. Indeed, if $i \neq j$, either i < j (i.e., the root $\alpha_{(i,j)}$ is positive) or else i > j and $\alpha_{(j,i)} = -\alpha_{(i,j)}$ is positive. Furthermore, if i < j, then $\alpha_{(i,j)} = \alpha_{(i,i+1)} + \alpha_{(i+1,i+2)} + \cdots + \alpha_{(j-1,j)}$ can be written uniquely as a linear combination of roots of this form, with nonnegative integer coefficients. So the $\alpha_{(i,i+1)}$ are a set of simple roots.

Finally, let's compute the Killing form $B(H_i, H_j)$, where H_i is shorthand for $H_{\alpha_{(i,i+1)}}$. Note first that H_i acts trivially on the root space \mathfrak{g}_{kl} unless k or l coincides with either i or i + 1. Thus if i - jis not 0, 1, or -1, $B(H_i, H_j) = 0$, since there are no root spaces for which the action of $\mathrm{ad}(H_i)$ and of $\mathrm{ad}(H_i)$ are simultaneously non-zero. It's also obvious that $B(H_i, H_i)$ is independent of i, since the Weyl group S_n contains a reflection (1,i) conjugating H_i to H_1 . So

$$\begin{split} B(H_i, H_i) &= B(H_1, H_1) = \operatorname{Tr}(\operatorname{ad}(H_1)^2) \\ &= \sum_{k < l} \operatorname{Tr}_{\mathfrak{g}_{kl}}(\operatorname{ad}(H_1)^2) + \operatorname{Tr}_{\mathfrak{g}_{lk}}(\operatorname{ad}(H_1)^2) \\ &= 2\sum_{k < l} (\alpha_{(k,l)}(H_1))^2 \\ &= 2(\alpha_{(1,2)}(H_1))^2 + 2\sum_{k=3}^n (\alpha_{(1,k)}(H_1))^2 + 2\sum_{k=3}^n (\alpha_{(2,k)}(H_1))^2 \\ &= 2\left(2^2 + (n-2) \cdot 1^2 + (n-2) \cdot 1^2\right) \\ &= 2(2n) = 4n. \end{split}$$

Similarly, if |i - j| = 1, then $B(H_i, H_j) = B(H_1, H_2)$ since there is an element of W conjugating the pair (i, j) to (1, 2). Also note that for k < l, $\alpha_{(k,l)}(H_1)$ is only nonzero if k = 1 or 2, and $\alpha_{(k,l)}(H_2)$ is only nonzero if (k, l) = (1, 2) or (1, 3) or if k = 2 or 3. So in this case, $B(H_i, H_i) = \text{Tr}(\text{ad}(H_1) \text{ad}(H_2))$

$$B(H_i, H_j) = \operatorname{Tr}(\operatorname{ad}(H_1) \operatorname{ad}(H_2))$$

= $\sum_{k < l} \operatorname{Tr}_{\mathfrak{g}_{kl}}(\operatorname{ad}(H_1) \operatorname{ad}(H_2)) + \operatorname{Tr}_{\mathfrak{g}_{lk}}(\operatorname{ad}(H_1) \operatorname{ad}(H_2))$
= $2 \sum_{k < l} \alpha_{(k,l)}(H_1) \alpha_{(k,l)}(H_2)$
= $2 \alpha_{(1,2)}(H_1) \alpha_{(1,2)}(H_2) + 2 \alpha_{(1,3)}(H_1) \alpha_{(1,3)}(H_2) + 2 \sum_{k=3}^n \alpha_{(2,k)}(H_1) \alpha_{(2,k)}(H_2)$
= $2 \left(2 \cdot (-1) + 1 \cdot 1 + (-1) \cdot 2 + \sum_{k=4}^n (-1) \cdot (1) \right)$
= $-2 \left(3 + (n-3) \right) = -2n.$

Thus the matrix $B(H_i, H_j)$ is

$$(2n) \begin{pmatrix} 2 & -1 & 0 & \cdots \\ -1 & 2 & -1 & \cdots \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 2 \end{pmatrix}.$$