HOMEWORK ASSIGNMENT \#7 SOLUTIONS

JONATHAN ROSENBERG

(a) Let $\mathfrak{g}=\mathfrak{s l}(n, \mathbb{C})$. Verify that \mathfrak{g} is simple of dimension $n^{2}-1$, with the subalgebra \mathfrak{h} of diagonal matrices of trace 0 as a Cartan subalgebra. Find all the roots α (there are $n^{2}-n$ of them) and for each one compute the corresponding element H_{α}. In what way does this example generalize what we did for $\operatorname{SU}(3)$? Solution. Let $\mathfrak{g}=\mathfrak{s l}(n, \mathbb{C})$ and let \mathfrak{h} be the diagonal matrices in \mathfrak{g}. As usual, let $e_{i j}$ be the matrix with a 1 in the (i, j)-entry and 0 's everywhere else, so that

$$
\left\{\begin{align*}
{\left[e_{i j}, e_{k l}\right] } & =e_{i j} e_{k l}-e_{k l} e_{i j}=\delta_{j k} e_{i l}-\delta_{i l} e_{k j} \tag{1}\\
{\left[e_{i i}-e_{j j}, e_{k l}\right] } & =\left(\delta_{i k}-\delta_{i l}-\delta_{j k}+\delta_{j l}\right) e_{k l}
\end{align*}\right.
$$

Thus \mathfrak{h} is maximal abelian, and of course it consists of semisimple elements (since all elements of \mathfrak{h} are diagonal), so it's a Cartan subalgebra. Note that $\operatorname{dim} \mathfrak{h}=n-1$ and $\operatorname{dim} \mathfrak{g}=n^{2}-1$.

To show \mathfrak{g} is simple, first let $\mathfrak{g}_{i j}=\mathbb{C} e_{i j}$ for $i \neq j$. There are $n^{2}-n$ of these one-dimensional subspaces, and they are eigenspaces for the adjoint action of \mathfrak{h} by (1). So these are the root spaces, and the roots can be identified with pairs (i, j) with $1 \leq i, j \leq n, i \neq j$. These act as linear functionals on \mathfrak{h} by $\alpha_{(i, j)}\left(\operatorname{diag}\left(x_{1}, \cdots, x_{n}\right)\right)=x_{i}-x_{j}$. Given any ideal \mathfrak{s} in \mathfrak{g}, it must be normalized by \mathfrak{h}, so \mathfrak{s} is the direct sum of $\mathfrak{s} \cap \mathfrak{h}$ with a sum of root spaces. We already know $\mathfrak{s l}(2, \mathbb{C})$ is simple, so assume $n>2$. If \mathfrak{s} contains the root space $\mathfrak{g}_{i j}, i \neq j$, then it contains $\left[\mathfrak{g}_{i j}, \mathfrak{g}_{j k}\right]=\mathfrak{g}_{i k}$ for all $k \neq i, j$, and similarly it contains $\left[\mathfrak{g}_{i j}, \mathfrak{g}_{k i}\right]=\mathfrak{g}_{k j}$ for all $k \neq i, j$. Then \mathfrak{s} in fact contains every root space, since we can get to every root space by a chain of such brackets. Then it contains all of \mathfrak{h}, since $\left[\mathfrak{g}_{i j}, \mathfrak{g}_{j i}\right]$ contains $e_{i i}-e_{j j}$, and such elements span \mathfrak{h}. On the other hand, if \mathfrak{s} contains a non-zero element H of \mathfrak{h}, then $\alpha(H) \neq 0$ for some root, and then \mathfrak{s} contains the root space \mathfrak{g}_{α}, since $\left[H, \mathfrak{g}_{\alpha}\right]=\alpha(H) \mathfrak{g}_{\alpha}=\mathfrak{g}_{\alpha}$. So \mathfrak{g} is simple.

Next, pick $\alpha=\alpha_{(i, j)}$ with $i \neq j$. The element H_{α} must be a multiple of $\left[e_{i j}, e_{j i}\right]=e_{i i}-e_{j j}$, and since $\left[e_{i i}-e_{j j}, e_{i j}\right]=2 e_{i j}, H_{\alpha}=e_{i i}-e_{j j}$. So the elements H_{α} generalize the elements $e_{11}-e_{22}$ and $e_{22}-e_{33}$ that showed up in the theory of $S U(3)$.
(b) Continuing with Exercise (a) above, show that one gets a system of $n-1$ simple roots i associated to the pairs $(i, i+1), i<n$. Compute the Killing form B restricted to \mathfrak{h}, by computing $B\left(H_{\alpha_{i}}, H_{\alpha_{j}}\right)$ for all the simple roots with $1 \leq i, j \leq n-1$. You should find that the matrix is tridiagonal. Solution. Now let's show that the pairs $(i, i+1)$ with $1 \leq i \leq n-1$ index a set of simple roots, corresponding to the set of positive roots $\left\{\alpha_{(i, j)} \mid 1 \leq i<j \leq n\right\}$. Indeed, if $i \neq j$, either $i<j$ (i.e., the root $\alpha_{(i, j)}$ is positive) or else $i>j$ and $\alpha_{(j, i)}=-\alpha_{(i, j)}$ is positive. Furthermore, if $i<j$, then $\alpha_{(i, j)}=\alpha_{(i, i+1)}+\alpha_{(i+1, i+2)}+\cdots+\alpha_{(j-1, j)}$ can be written uniquely as a linear combination of roots of this form, with nonnegative integer coefficients. So the $\alpha_{(i, i+1)}$ are a set of simple roots.

Finally, let's compute the Killing form $B\left(H_{i}, H_{j}\right)$, where H_{i} is shorthand for $H_{\alpha_{(i, i+1)}}$. Note first that H_{i} acts trivially on the root space $\mathfrak{g}_{k l}$ unless k or l coincides with either i or $i+1$. Thus if $i-j$ is not 0,1 , or $-1, B\left(H_{i}, H_{j}\right)=0$, since there are no root spaces for which the action of $\operatorname{ad}\left(H_{i}\right)$ and of $\operatorname{ad}\left(H_{j}\right)$ are simultaneously non-zero. It's also obvious that $B\left(H_{i}, H_{i}\right)$ is independent of i, since
the Weyl group S_{n} contains a reflection $(1, i)$ conjugating H_{i} to H_{1}. So

$$
\begin{aligned}
B\left(H_{i}, H_{i}\right) & =B\left(H_{1}, H_{1}\right)=\operatorname{Tr}\left(\operatorname{ad}\left(H_{1}\right)^{2}\right) \\
& =\sum_{k<l} \operatorname{Tr}_{\mathfrak{g}_{k l}}\left(\operatorname{ad}\left(H_{1}\right)^{2}\right)+\operatorname{Tr}_{\mathfrak{g}_{l k}}\left(\operatorname{ad}\left(H_{1}\right)^{2}\right) \\
& =2 \sum_{k<l}\left(\alpha_{(k, l)}\left(H_{1}\right)\right)^{2} \\
& =2\left(\alpha_{(1,2)}\left(H_{1}\right)\right)^{2}+2 \sum_{k=3}^{n}\left(\alpha_{(1, k)}\left(H_{1}\right)\right)^{2}+2 \sum_{k=3}^{n}\left(\alpha_{(2, k)}\left(H_{1}\right)\right)^{2} \\
& =2\left(2^{2}+(n-2) \cdot 1^{2}+(n-2) \cdot 1^{2}\right) \\
& =2(2 n)=4 n .
\end{aligned}
$$

Similarly, if $|i-j|=1$, then $B\left(H_{i}, H_{j}\right)=B\left(H_{1}, H_{2}\right)$ since there is an element of W conjugating the pair (i, j) to $(1,2)$. Also note that for $k<l, \alpha_{(k, l)}\left(H_{1}\right)$ is only nonzero if $k=1$ or 2 , and $\alpha_{(k, l)}\left(H_{2}\right)$ is only nonzero if $(k, l)=(1,2)$ or $(1,3)$ or if $k=2$ or 3 . So in this case,

$$
\begin{aligned}
B\left(H_{i}, H_{j}\right) & =\operatorname{Tr}\left(\operatorname{ad}\left(H_{1}\right) \operatorname{ad}\left(H_{2}\right)\right) \\
& =\sum_{k<l} \operatorname{Tr}_{\mathfrak{g}_{k l}}\left(\operatorname{ad}\left(H_{1}\right) \operatorname{ad}\left(H_{2}\right)\right)+\operatorname{Tr}_{\mathfrak{g}_{l k}}\left(\operatorname{ad}\left(H_{1}\right) \operatorname{ad}\left(H_{2}\right)\right) \\
& =2 \sum_{k<l} \alpha_{(k, l)}\left(H_{1}\right) \alpha_{(k, l)}\left(H_{2}\right) \\
& =2 \alpha_{(1,2)}\left(H_{1}\right) \alpha_{(1,2)}\left(H_{2}\right)+2 \alpha_{(1,3)}\left(H_{1}\right) \alpha_{(1,3)}\left(H_{2}\right)+2 \sum_{k=3}^{n} \alpha_{(2, k)}\left(H_{1}\right) \alpha_{(2, k)}\left(H_{2}\right) \\
& =2\left(2 \cdot(-1)+1 \cdot 1+(-1) \cdot 2+\sum_{k=4}^{n}(-1) \cdot(1)\right) \\
& =-2(3+(n-3))=-2 n .
\end{aligned}
$$

Thus the matrix $B\left(H_{i}, H_{j}\right)$ is

$$
(2 n)\left(\begin{array}{cccc}
2 & -1 & 0 & \cdots \\
-1 & 2 & -1 & \cdots \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 2
\end{array}\right) .
$$

