MATH 748R, Spring 2012 Homotopy Theory Homework Assignment #2: Fibrations

Jonathan Rosenberg

due Friday, Feburary 17, 2012

- 1. (An easy slice theorem) Let X be a smooth n-manifold and let G be a compact Lie group acting smoothly and freely on X. Prove that X/G is a smooth manifold of dimension $n-\dim G$ and that the quotient map $p: X \to X/G$ is locally the projection of a product, hence a fiber bundle and a Serre fibration with fiber G. (Hint: use the implicit function theorem.)
- 2. Apply the result of (1) (with G = SO(n-1)) to conclude that the map $SO(n) \twoheadrightarrow S^{n-1}$, defined by $g \mapsto g \cdot v_0$, v_0 the north pole of the unit sphere in \mathbb{R}^n , is a fibration with fiber SO(n-1). Deduce from the long exact homotopy sequence that the inclusion map $SO(n-1) \hookrightarrow SO(n)$ induces an isomorphism on π_j for $j \leq n-3$. Show from the example of n = 3 that it is *not* necessarily an isomorphism on π_{n-2} . Deduce that there is a *stable range* for the homotopy groups of SO(n); $\pi_j(SO(n))$ is independent of n once n > j + 1.
- 3. Apply the result of (1) (with G = U(n-1)) to conclude that the map $U(n) \twoheadrightarrow S^{2n-1}$, defined by $g \mapsto g \cdot v_0$, v_0 the north pole of the unit sphere in \mathbb{C}^n , is a fibration with fiber U(n-1). Deduce from the long exact homotopy sequence that the inclusion map $U(n-1) \hookrightarrow U(n)$ induces an isomorphism on π_j for $j \leq 2n-3$. Show from the example of n = 2 that it is not necessarily an isomorphism on π_{2n-1} . (Hint: SU(2) can be identified with S^3 , and the universal cover of U(2) is $SU(2) \times \mathbb{R}$.) Deduce that there is a *stable range* for the homotopy groups of U(n); $\pi_j(U(n))$ is independent of n once n > j/2.