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1. The Relative Hurewicz Theorem. Starting from the absolute version of the Hurewicz
Theorem proved in class, prove the relative version: that if n ≥ 2 and A is a simply connected
subcomplex of a connected CW complexX and (X,A) is (n−1)-connected, thenHi(X,A) = 0
for i ≤ n− 1 and the Hurewicz map πn(X,A) → Hn(X,A) is an isomorphism.

2. A construction of Whitehead and Pontryagin. Recall that we proved from the exact
sequence of the fibration S1 → S3 → S2 that π2(S

2) ∼= Z, and proved from the Homotopy
Excision Theorem that the suspension map π3(S

2) → π4(S
3) is surjective. Homotopy Excision

also proves that the further suspension homomorphisms

π4(S
3) → π5(S

4) → π6(S
5) → · · ·

are all isomorphisms. However, this left open the question of what π4(S
3) actually is. White-

head constructed a homomorphism now called the J-homomorphism πj(SO(k)) → πj+k(S
k)

which can be used to construct an element of order 2 in π4(S
3), since SO(3) ∼= RP

3 has
fundamental group Z/2. In fact the J-homomorphism is an isomorphism from π1(SO(3)) to
π4(S

3); the inverse map π4(S
3) → π1(SO(3)) is given by a construction of Pontryagin. Fill

in as much as you can of the following sketch:

(a) We start with Pontryagin’s construction. Let f : S4 → S3. Without loss of generality
we may assume f is smooth. By Sard’s Theorem, we can pick a regular value z ∈ S3,
and f−1(z) is (by the Implicit Function Theorem) a compact submanifold of S3 of
dimension 4 − 3 = 1. In other words, it is a finite union of circles. These circles
acquire orientations from the usual orientations of S4 and S3. Furthermore, if we fix a
frame (oriented basis for the tangent space) at z, pulling this back gives a framing of
f−1(z), i.e., a smoothly varying family of frames, for the 3-dimensional normal bundle
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of f−1(z). Since the normal bundle is necessarily trivial (why?), if f−1(z) is connected,
this gives us a map S1 → GL+(3,R) ≃ SO(3). (Here GL+(3,R) is the group of 3 × 3
matrices with positive determinant; it may be identified with the set of oriented frames of
R
3, and has a deformation retraction down to SO(3) by polar decompostion from linear

algebra.) Show that in this way one gets a well-defined map π4(S
3) → π1(SO(3)) ∼= Z/2.

(There are lots of things to check. See the last chapter of Milnor, Topology from the

Differentiable Viewpoint, if you get stuck. If f−1(z) has multiple components, just add
the corresponding elements of π1(SO(3)).)

(b) Now consider Whitehead’s construction. A class in π1(SO(3)) corresponds to a homo-
topy class of maps S1 → SO(3) ⊂ Diff+(S2) (via the transitive action of SO(3) on S2 by
rotations), and thus to a map h : S1×S2 → S2. Note that S1×S2 = (S1∨S2)∪f e

3, where
the attaching map [f ] ∈ π2(S

1 ∨ S2) ∼=
⊕

n Zen can be identified with e1 − e0 (why?).
When we suspend, Σf becomes homotopically trivial and so Σ(S1×S2) ≃ S2 ∨S3 ∨S4.
(Prove this by using the fact that (S2×S3, S2∨S3) is 4-connected to compute π3(S

2∨S3),
and then see where the suspension map takes [f ] ∈ π2(S

1 ∨ S2).) Take the compos-

ite S4 →֒ Σ(S1 ∨ S2)
Σh
−−→ S3, and show that in this way we get a homomorphism

π1(SO(3)) → π4(S
3).

(c) (extra credit) See if you can show the maps of Pontryagin in (a) and of Whitehead in
(b) are inverse to one another.
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