MATH 748R, Spring 2012 Homotopy Theory Homework Assignment \#4: Applications of the Homotopy Excision and Hurewicz Theorems

Jonathan Rosenberg

due Friday, March 9, 2012

1. The Relative Hurewicz Theorem. Starting from the absolute version of the Hurewicz Theorem proved in class, prove the relative version: that if $n \geq 2$ and A is a simply connected subcomplex of a connected CW complex X and (X, A) is $(n-1)$-connected, then $H_{i}(X, A)=0$ for $i \leq n-1$ and the Hurewicz map $\pi_{n}(X, A) \rightarrow H_{n}(X, A)$ is an isomorphism.
2. A construction of Whitehead and Pontryagin. Recall that we proved from the exact sequence of the fibration $S^{1} \rightarrow S^{3} \rightarrow S^{2}$ that $\pi_{2}\left(S^{2}\right) \cong \mathbb{Z}$, and proved from the Homotopy Excision Theorem that the suspension map $\pi_{3}\left(S^{2}\right) \rightarrow \pi_{4}\left(S^{3}\right)$ is surjective. Homotopy Excision also proves that the further suspension homomorphisms

$$
\pi_{4}\left(S^{3}\right) \rightarrow \pi_{5}\left(S^{4}\right) \rightarrow \pi_{6}\left(S^{5}\right) \rightarrow \cdots
$$

are all isomorphisms. However, this left open the question of what $\pi_{4}\left(S^{3}\right)$ actually is. Whitehead constructed a homomorphism now called the J-homomorphism $\pi_{j}(S O(k)) \rightarrow \pi_{j+k}\left(S^{k}\right)$ which can be used to construct an element of order 2 in $\pi_{4}\left(S^{3}\right)$, since $S O(3) \cong \mathbb{R} \mathbb{P}^{3}$ has fundamental group $\mathbb{Z} / 2$. In fact the J-homomorphism is an isomorphism from $\pi_{1}(S O(3))$ to $\pi_{4}\left(S^{3}\right)$; the inverse map $\pi_{4}\left(S^{3}\right) \rightarrow \pi_{1}(S O(3))$ is given by a construction of Pontryagin. Fill in as much as you can of the following sketch:
(a) We start with Pontryagin's construction. Let $f: S^{4} \rightarrow S^{3}$. Without loss of generality we may assume f is smooth. By Sard's Theorem, we can pick a regular value $z \in S^{3}$, and $f^{-1}(z)$ is (by the Implicit Function Theorem) a compact submanifold of S^{3} of dimension $4-3=1$. In other words, it is a finite union of circles. These circles acquire orientations from the usual orientations of S^{4} and S^{3}. Furthermore, if we fix a frame (oriented basis for the tangent space) at z, pulling this back gives a framing of $f^{-1}(z)$, i.e., a smoothly varying family of frames, for the 3 -dimensional normal bundle
of $f^{-1}(z)$. Since the normal bundle is necessarily trivial (why?), if $f^{-1}(z)$ is connected, this gives us a map $S^{1} \rightarrow G L^{+}(3, \mathbb{R}) \simeq S O(3)$. (Here $G L^{+}(3, \mathbb{R})$ is the group of 3×3 matrices with positive determinant; it may be identified with the set of oriented frames of \mathbb{R}^{3}, and has a deformation retraction down to $S O(3)$ by polar decompostion from linear algebra.) Show that in this way one gets a well-defined map $\pi_{4}\left(S^{3}\right) \rightarrow \pi_{1}(S O(3)) \cong \mathbb{Z} / 2$. (There are lots of things to check. See the last chapter of Milnor, Topology from the Differentiable Viewpoint, if you get stuck. If $f^{-1}(z)$ has multiple components, just add the corresponding elements of $\pi_{1}(S O(3))$.)
(b) Now consider Whitehead's construction. A class in $\pi_{1}(S O(3))$ corresponds to a homotopy class of maps $S^{1} \rightarrow S O(3) \subset \mathrm{Diff}^{+}\left(S^{2}\right)$ (via the transitive action of $S O(3)$ on S^{2} by rotations), and thus to a map $h: S^{1} \times S^{2} \rightarrow S^{2}$. Note that $S^{1} \times S^{2}=\left(S^{1} \vee S^{2}\right) \cup_{f} e^{3}$, where the attaching map $[f] \in \pi_{2}\left(S^{1} \vee S^{2}\right) \cong \bigoplus_{n} \mathbb{Z} e_{n}$ can be identified with $e_{1}-e_{0}$ (why?). When we suspend, Σf becomes homotopically trivial and so $\Sigma\left(S^{1} \times S^{2}\right) \simeq S^{2} \vee S^{3} \vee S^{4}$. (Prove this by using the fact that ($S^{2} \times S^{3}, S^{2} \vee S^{3}$) is 4-connected to compute $\pi_{3}\left(S^{2} \vee S^{3}\right)$, and then see where the suspension map takes $[f] \in \pi_{2}\left(S^{1} \vee S^{2}\right)$.) Take the composite $S^{4} \hookrightarrow \Sigma\left(S^{1} \vee S^{2}\right) \xrightarrow{\Sigma h} S^{3}$, and show that in this way we get a homomorphism $\pi_{1}(S O(3)) \rightarrow \pi_{4}\left(S^{3}\right)$.
(c) (extra credit) See if you can show the maps of Pontryagin in (a) and of Whitehead in (b) are inverse to one another.

