MATH 748R, Spring 2012 Homotopy Theory
 Homework Assignment \#5: Eilenberg-MacLane Spaces and Obstruction Theory

Jonathan Rosenberg
Solutions

1. Use the theory of Postnikov systems to classify (up to homotopy equivalence) all CW complexes X with $\pi_{2}(X) \cong \pi_{3}(X) \cong \mathbb{Z}$ and all other homotopy groups 0 . (It should turn out there is a one-parameter family of such X 's; how do you distinguish them?)
Solution. These complexes come with a fibration

and so are classified by the k-invariant

$$
k \in[K(\mathbb{Z}, 2), B K(\mathbb{Z}, 3)]=H^{4}(K(\mathbb{Z}, 2), \mathbb{Z})=H^{4}\left(\mathbb{C P}^{\infty}, \mathbb{Z}\right) \cong \mathbb{Z}
$$

So for each integer k, we have a corresponding space X_{k} with this k-invariant. How does one distinguish them? Well, X_{k} comes with a Serre spectral sequence $H^{p}\left(K(\mathbb{Z}, 2), H^{q}(K(\mathbb{Z}, 3), \mathbb{Z})\right.$ $\Rightarrow H^{p+q}\left(X_{k}, \mathbb{Z}\right)$. By the Hurewicz Theorem, the Hurewicz map $\pi_{j}(K(\mathbb{Z}, 3)) \rightarrow H_{j}(K(\mathbb{Z}, 3), \mathbb{Z})$ is an isomorphism for $j=3$ and is surjective for $j=4$. Thus $H^{q}(K(\mathbb{Z}, 3), \mathbb{Z})=0$ for $q=1,2,4$ and $\cong \mathbb{Z}$ for $q=0,3$, so the bottom rows of the spectral sequence look like

So we'll always have $H^{j}\left(X_{k}, \mathbb{Z}\right)=0$ for $q=1$ and $\cong \mathbb{Z}$ for $q=2$ (this is also obvious from the Hurewicz Theorem) and the first place anything interesting can happen is in total degree 3 or 4 . If $k=0, X_{k} \simeq K(\mathbb{Z}, 2) \times K(\mathbb{Z}, 3)$ and $d_{4}=0$, so $H^{3}\left(X_{k}, \mathbb{Z}\right) \cong \mathbb{Z}$. But the k-invariant in $H^{4}(K(\mathbb{Z}, 3), \mathbb{Z})$ turns out to be precisely the image of the standard generator of $H^{3}(K(\mathbb{Z}, 3), \mathbb{Z})$ in $H^{4}(K(\mathbb{Z}, 3), \mathbb{Z})$ under d_{4}. So if the k-invariant is non-zero, $H^{3}\left(X_{k}, \mathbb{Z}\right)=0$ and $H^{4}\left(X_{k}, \mathbb{Z}\right) \cong \mathbb{Z} / k$. So we can read k (up to sign) off from the cohomology of X_{k}.
2. Classify up to homotopy all maps $K(\mathbb{Z}, 2) \rightarrow K(\mathbb{Z}, 2)$, and show that if you think of $K(\mathbb{Z}, 2)$ as $B S^{1}$, that they all arise as $B \phi$ for some homomorphism of topological groups $\phi: S^{1} \rightarrow S^{1}$.
Solution. We have $[K(\mathbb{Z}, 2), K(\mathbb{Z}, 2)] \cong H^{2}(K(\mathbb{Z}, 2), \mathbb{Z}) \cong \mathbb{Z}$. So a map $K(\mathbb{Z}, 2) \rightarrow K(\mathbb{Z}, 2)$ is determined by the integer k by which it multiplies on H_{2} or H^{2}. Now for each k, we have the continuous homomorphism $\phi_{k}: z \mapsto z^{k}$ from S^{1} to S^{1}, which induces multiplication by k on $\pi_{1}\left(S^{1}\right)$. Since the functor B shifts homotopy groups up in dimension by $1, B \phi_{k}$ induces multiplication by k on π_{2} or H_{2}. Thus all possible maps $B S^{1} \rightarrow B^{1}$ arise as $B \phi$ for some continuous group homomorphism ϕ.
3. Classify up to homotopy all maps $K(\mathbb{Z} / 2,1) \rightarrow K(\mathbb{Z}, 2)$, and show that if you think of $K(\mathbb{Z} / 2,1)$ as $B(\mathbb{Z} / 2)$, that they all arise as $B \phi$ for some group homomorphism $\phi:(\mathbb{Z} / 2) \rightarrow S^{1}$. Solution. Just as in the last problem, we have $[K(\mathbb{Z} / 2,1), K(\mathbb{Z}, 2)] \cong H^{2}(K(\mathbb{Z} / 2,1), \mathbb{Z}) \cong$ $H^{2}\left(\mathbb{R} \mathbb{P}^{\infty}, \mathbb{Z}\right) \cong \mathbb{Z} / 2$. So there are exactly two homotopy classes of maps $K(\mathbb{Z} / 2,1) \rightarrow K(\mathbb{Z}, 2)$. (The based and unbased classifications are the same since both spaces are simple.) But there are two homomorphisms $\phi:(\mathbb{Z} / 2) \rightarrow S^{1}$. The trivial homomorphism clearly induces the null-homotopic map. The injective homomorphism induces the map $E \mathbb{Z} / 2=S^{0} * S^{0} * \cdots \rightarrow$ $S^{1} * S^{1} * \cdots=E S^{1}$ corresponding to the inclusion $S^{0} \hookrightarrow S^{1}$ and this map is not equivariantly homotopically trivial. So both homotopy classes of maps $K(\mathbb{Z} / 2,1) \rightarrow K(\mathbb{Z}, 2)$ arise as $B \phi$ for some homomorphism $\phi:(\mathbb{Z} / 2) \rightarrow S^{1}$.
4. Let X be a connected CW complex with a distinguished 0-cell as basepoint. Show that if G is a discrete group, any homomorphism $\pi_{1}(X) \rightarrow G$ can be realized by a unique homotopy class of based maps $X \rightarrow K(G, 1)$. (This is a slight variant of a theorem proved in class.)
Solution. Without loss of generality we can assume X has a single 0 -cell. Then the 1 -skeleton X^{1} of X can be assumed to be a wedge of S^{1} 's indexed by a set of generators x_{i} for $\pi_{1}(X)$, and the 2 -skeleton has additional 2 -cells corresponding to the relations $r_{j}\left(x_{1}, x_{2}, \cdots\right)$ in a presentation for $\pi_{1}(X)$. Clearly there is a unique map $X^{1} \rightarrow K(G, 1)$ sending each x_{i} to $\phi\left(x_{i}\right) \in G=\pi_{1}(K(G, 1))$. This map can be extended to a map $X^{2} \rightarrow K(G, 1)$ since each [r_{j}] goes to 0 in G. Then the obstructions to extending to higher skeleta all vanish, since $K(G, 1)$ has all its higher homotopy groups $=0$. Similarly, suppose f and f^{\prime} are two maps $X \rightarrow K(G, 1)$ inducing the same map on π_{1}. Then $\left.f\right|_{X^{1}}$ and $\left.f^{\prime}\right|_{X^{1}}$ are homotopic, since each x_{i} goes to the same element of G under the two maps. Again, the obstructions to a homotopy
$\left.\left.f\right|_{X^{n}} \simeq f^{\prime}\right|_{X^{n}}$ live in $H^{n}\left(X, \pi_{1}(K(G, 1))\right)=0$ for $n=2$, so we can extend by induction to a homotopy $f \simeq f^{\prime}$.

