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Solutions

1. Use the theory of Postnikov systems to classify (up to homotopy equivalence) all CW com-
plexes X with π2(X) ∼= π3(X) ∼= Z and all other homotopy groups 0. (It should turn out
there is a one-parameter family of such X’s; how do you distinguish them?)

Solution. These complexes come with a fibration

K(Z, 3) // X

p

��
K(Z, 2)

and so are classified by the k-invariant

k ∈ [K(Z, 2), BK(Z, 3)] = H4(K(Z, 2), Z) = H4(CP∞, Z) ∼= Z.

So for each integer k, we have a corresponding space Xk with this k-invariant. How does one
distinguish them? Well, Xk comes with a Serre spectral sequence Hp(K(Z, 2),Hq(K(Z, 3), Z)
⇒ Hp+q(Xk, Z). By the Hurewicz Theorem, the Hurewicz map πj(K(Z, 3)) → Hj(K(Z, 3), Z)
is an isomorphism for j = 3 and is surjective for j = 4. Thus Hq(K(Z, 3), Z) = 0 for q = 1, 2, 4
and ∼= Z for q = 0, 3, so the bottom rows of the spectral sequence look like

q 0 0 0 0 0 · · ·
Z

d4

**UUUUUUUUUUUUUUUUUUUUUUUUUUUU 0 Z 0 Z · · ·
0 0 0 0 0 · · ·
0 0 0 0 0 · · ·
Z 0 Z 0 Z · · · .
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So we’ll always have Hj(Xk, Z) = 0 for q = 1 and ∼= Z for q = 2 (this is also obvious
from the Hurewicz Theorem) and the first place anything interesting can happen is in total
degree 3 or 4. If k = 0, Xk ' K(Z, 2) × K(Z, 3) and d4 = 0, so H3(Xk, Z) ∼= Z. But the
k-invariant in H4(K(Z, 3), Z) turns out to be precisely the image of the standard generator of
H3(K(Z, 3), Z) in H4(K(Z, 3), Z) under d4. So if the k-invariant is non-zero, H3(Xk, Z) = 0
and H4(Xk, Z) ∼= Z/k. So we can read k (up to sign) off from the cohomology of Xk. �

2. Classify up to homotopy all maps K(Z, 2) → K(Z, 2), and show that if you think of K(Z, 2)
as BS1, that they all arise as Bφ for some homomorphism of topological groups φ : S1 → S1.

Solution. We have [K(Z, 2),K(Z, 2)] ∼= H2(K(Z, 2), Z) ∼= Z. So a map K(Z, 2) → K(Z, 2) is
determined by the integer k by which it multiplies on H2 or H2. Now for each k, we have
the continuous homomorphism φk : z 7→ zk from S1 to S1, which induces multiplication by k
on π1(S1). Since the functor B shifts homotopy groups up in dimension by 1, Bφk induces
multiplication by k on π2 or H2. Thus all possible maps BS1 → B1 arise as Bφ for some
continuous group homomorphism φ. �

3. Classify up to homotopy all maps K(Z/2, 1) → K(Z, 2), and show that if you think of
K(Z/2, 1) as B(Z/2), that they all arise as Bφ for some group homomorphism φ : (Z/2) → S1.

Solution. Just as in the last problem, we have [K(Z/2, 1),K(Z, 2)] ∼= H2(K(Z/2, 1), Z) ∼=
H2(RP∞, Z) ∼= Z/2. So there are exactly two homotopy classes of maps K(Z/2, 1) → K(Z, 2).
(The based and unbased classifications are the same since both spaces are simple.) But there
are two homomorphisms φ : (Z/2) → S1. The trivial homomorphism clearly induces the
null-homotopic map. The injective homomorphism induces the map EZ/2 = S0 ∗ S0 ∗ · · · →
S1 ∗S1 ∗ · · · = ES1 corresponding to the inclusion S0 ↪→ S1 and this map is not equivariantly
homotopically trivial. So both homotopy classes of maps K(Z/2, 1) → K(Z, 2) arise as Bφ
for some homomorphism φ : (Z/2) → S1. �

4. Let X be a connected CW complex with a distinguished 0-cell as basepoint. Show that if G
is a discrete group, any homomorphism π1(X) → G can be realized by a unique homotopy
class of based maps X → K(G, 1). (This is a slight variant of a theorem proved in class.)

Solution. Without loss of generality we can assume X has a single 0-cell. Then the 1-skeleton
X1 of X can be assumed to be a wedge of S1’s indexed by a set of generators xi for π1(X),
and the 2-skeleton has additional 2-cells corresponding to the relations rj(x1, x2, · · · ) in a
presentation for π1(X). Clearly there is a unique map X1 → K(G, 1) sending each xi to
φ(xi) ∈ G = π1(K(G, 1)). This map can be extended to a map X2 → K(G, 1) since each
[rj ] goes to 0 in G. Then the obstructions to extending to higher skeleta all vanish, since
K(G, 1) has all its higher homotopy groups = 0. Similarly, suppose f and f ′ are two maps
X → K(G, 1) inducing the same map on π1. Then f |X1 and f ′|X1 are homotopic, since each
xi goes to the same element of G under the two maps. Again, the obstructions to a homotopy
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f |Xn ' f ′|Xn live in Hn(X, π1(K(G, 1))) = 0 for n = 2, so we can extend by induction to a
homotopy f ' f ′. �
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