MATH 748R, Spring 2012 Homotopy Theory Homework Assignment #5: Eilenberg-MacLane Spaces and Obstruction Theory

Jonathan Rosenberg

Solutions

1. Use the theory of Postnikov systems to classify (up to homotopy equivalence) all CW complexes X with $\pi_2(X) \cong \pi_3(X) \cong \mathbb{Z}$ and all other homotopy groups 0. (It should turn out there is a one-parameter family of such X's; how do you distinguish them?)

Solution. These complexes come with a fibration

and so are classified by the k-invariant

$$k \in [K(\mathbb{Z},2), BK(\mathbb{Z},3)] = H^4(K(\mathbb{Z},2),\mathbb{Z}) = H^4(\mathbb{C}\mathbb{P}^\infty,\mathbb{Z}) \cong \mathbb{Z}.$$

So for each integer k, we have a corresponding space X_k with this k-invariant. How does one distinguish them? Well, X_k comes with a Serre spectral sequence $H^p(K(\mathbb{Z},2), H^q(K(\mathbb{Z},3),\mathbb{Z}))$ $\Rightarrow H^{p+q}(X_k,\mathbb{Z})$. By the Hurewicz Theorem, the Hurewicz map $\pi_j(K(\mathbb{Z},3)) \to H_j(K(\mathbb{Z},3),\mathbb{Z})$ is an isomorphism for j = 3 and is surjective for j = 4. Thus $H^q(K(\mathbb{Z},3),\mathbb{Z}) = 0$ for q = 1, 2, 4and $\cong \mathbb{Z}$ for q = 0, 3, so the bottom rows of the spectral sequence look like

So we'll always have $H^j(X_k, \mathbb{Z}) = 0$ for q = 1 and $\cong \mathbb{Z}$ for q = 2 (this is also obvious from the Hurewicz Theorem) and the first place anything interesting can happen is in total degree 3 or 4. If k = 0, $X_k \simeq K(\mathbb{Z}, 2) \times K(\mathbb{Z}, 3)$ and $d_4 = 0$, so $H^3(X_k, \mathbb{Z}) \cong \mathbb{Z}$. But the *k*-invariant in $H^4(K(\mathbb{Z}, 3), \mathbb{Z})$ turns out to be precisely the image of the standard generator of $H^3(K(\mathbb{Z}, 3), \mathbb{Z})$ in $H^4(K(\mathbb{Z}, 3), \mathbb{Z})$ under d_4 . So if the *k*-invariant is non-zero, $H^3(X_k, \mathbb{Z}) = 0$ and $H^4(X_k, \mathbb{Z}) \cong \mathbb{Z}/k$. So we can read *k* (up to sign) off from the cohomology of X_k . \Box

- 2. Classify up to homotopy all maps $K(\mathbb{Z}, 2) \to K(\mathbb{Z}, 2)$, and show that if you think of $K(\mathbb{Z}, 2)$ as BS^1 , that they all arise as $B\phi$ for some homomorphism of topological groups $\phi: S^1 \to S^1$. Solution. We have $[K(\mathbb{Z}, 2), K(\mathbb{Z}, 2)] \cong H^2(K(\mathbb{Z}, 2), \mathbb{Z}) \cong \mathbb{Z}$. So a map $K(\mathbb{Z}, 2) \to K(\mathbb{Z}, 2)$ is determined by the integer k by which it multiplies on H_2 or H^2 . Now for each k, we have the continuous homomorphism $\phi_k: z \mapsto z^k$ from S^1 to S^1 , which induces multiplication by k on $\pi_1(S^1)$. Since the functor B shifts homotopy groups up in dimension by 1, $B\phi_k$ induces multiplication by k on π_2 or H_2 . Thus all possible maps $BS^1 \to B^1$ arise as $B\phi$ for some continuous group homomorphism ϕ . \Box
- 3. Classify up to homotopy all maps K(ℤ/2,1) → K(ℤ,2), and show that if you think of K(ℤ/2,1) as B(ℤ/2), that they all arise as Bφ for some group homomorphism φ: (ℤ/2) → S¹. Solution. Just as in the last problem, we have [K(ℤ/2,1), K(ℤ,2)] ≅ H²(K(ℤ/2,1),ℤ) ≅ H²(ℝℙ[∞],ℤ) ≅ ℤ/2. So there are exactly two homotopy classes of maps K(ℤ/2,1) → K(ℤ,2). (The based and unbased classifications are the same since both spaces are simple.) But there are two homomorphisms φ: (ℤ/2) → S¹. The trivial homomorphism clearly induces the null-homotopic map. The injective homomorphism induces the map Eℤ/2 = S⁰ * S⁰ * · · · → S¹ * S¹ * · · · = ES¹ corresponding to the inclusion S⁰ ↔ S¹ and this map is not equivariantly homotopically trivial. So both homotopy classes of maps K(ℤ/2,1) → K(ℤ,2) arise as Bφ for some homomorphism φ: (ℤ/2) → S¹. □
- 4. Let X be a connected CW complex with a distinguished 0-cell as basepoint. Show that if G is a discrete group, any homomorphism $\pi_1(X) \to G$ can be realized by a unique homotopy class of based maps $X \to K(G, 1)$. (This is a slight variant of a theorem proved in class.)

Solution. Without loss of generality we can assume X has a single 0-cell. Then the 1-skeleton X^1 of X can be assumed to be a wedge of S^1 's indexed by a set of generators x_i for $\pi_1(X)$, and the 2-skeleton has additional 2-cells corresponding to the relations $r_j(x_1, x_2, \cdots)$ in a presentation for $\pi_1(X)$. Clearly there is a unique map $X^1 \to K(G, 1)$ sending each x_i to $\phi(x_i) \in G = \pi_1(K(G, 1))$. This map can be extended to a map $X^2 \to K(G, 1)$ since each $[r_j]$ goes to 0 in G. Then the obstructions to extending to higher skeleta all vanish, since K(G, 1) has all its higher homotopy groups = 0. Similarly, suppose f and f' are two maps $X \to K(G, 1)$ inducing the same map on π_1 . Then $f|_{X^1}$ and $f'|_{X^1}$ are homotopic, since each x_i goes to the same element of G under the two maps. Again, the obstructions to a homotopy

 $f|_{X^n} \simeq f'|_{X^n}$ live in $H^n(X, \pi_1(K(G, 1))) = 0$ for n = 2, so we can extend by induction to a homotopy $f \simeq f'$. \Box