MATH 748R, Spring 2012 Homotopy Theory Homework Assignment \#6:
 The Serre Spectral Sequence and Applications

Jonathan Rosenberg

Solutions

1. Show that an even-dimensional sphere cannot be the total space of a spherical fibration over a sphere (regardless of the dimensions of the fiber and the base). Also show that if an odddimensional sphere of dimension $2 n+1$ is the total space of a spherical fibration over a sphere, then the base must have dimension $n+1$ and the fiber must have dimension n. (This case of course is possible; think of S^{3} as an S^{1}-bundle over S^{2}, or of S^{7} as an S^{3}-bundle over S^{4}.)
Solution. First suppose that $S^{2 n}$ is a fibration over S^{k}, with fiber S^{m}. We can't have $k=1$, since any map $S^{2 n} \rightarrow S^{1}$ is null-homotopic (since $S^{1}=K(\mathbb{Z}, 1)$ and $S^{2 n}$ is simply connected). So the base of the fibration is simply connected and we have a Serre spectral sequence $H_{p}\left(S^{k}, H_{q}\left(S^{m}, \mathbb{Z}\right)\right) \Rightarrow H_{p+q}\left(S^{2 n}, \mathbb{Z}\right)$. We need something non-zero in E^{2} in total degree $p+q=2 n$, and everything else in other positive total degrees must die in E^{∞}. Since we start with \mathbb{Z} 's in total degrees k, m, and $k+m$, and differentials have bidegree ($-r, r-1$), the only possibility is to have $m=k-1$ and $k+m=2 n$, which is impossible, since this implies $2 m=2 n-1$. The case where we start with an odd sphere $S^{2 n+1}$ and $n>0$ is similar, but this time it is possible to have $m=k-1$ and $k+m=2 n+1$, so $2 m=2 n, m=n$, and $k=m+1=n+1$, as long as $d_{n+1}: E_{n+1,0}^{n+1} \rightarrow E_{0, n}^{n+1}$ is an isomorphism. Finally, there is one and only one case where the base is not simply connected: S^{1} is a bundle over S^{1} with fiber $S^{0}=\mathbb{Z} / 2$, via the covering map $S^{1} \rightarrow S^{1}$ of degree 2 .
2. Recall that we used the Serre spectral sequence in homology to show in class that $H_{j}\left(\Omega S^{n}, \mathbb{Z}\right)=$ 0 for j not a multiple of $n-1$ and that $H_{j}\left(\Omega S^{n}, \mathbb{Z}\right) \cong \mathbb{Z}$ for j a multiple of $n-1$. Use the Serre spectral sequence in cohomology to show that for n odd, $H^{*}\left(\Omega S^{n}, \mathbb{Q}\right)$ is a polynomial ring on a single generator in degree $n-1$. What goes wrong with the argument if you use integral instead of rational coefficients?
Solution. Let $n>1$ and let $A=\bigoplus_{j} H^{j}\left(\Omega S^{n}, \mathbb{Q}\right)$ be the rational cohomology ring of ΩS^{n}. The Serre spectral sequence for the path fibration of S^{n} has $E_{2}^{p, q}=\bigwedge_{\mathbb{Q}}(x) \otimes A$ and must
have $E_{\infty}^{p, q}=0$ except with $p=q=0$. Here $\bigwedge_{\mathbb{Q}}(x)=\mathbb{Q}[x] /\left(x^{2}\right)$ is the cohomology ring of S^{n}, with x in degree n, and the usual rules of graded commutativity apply, so x commutes with all of A if n is even, commutes with $A^{\text {even }}$ if n is odd, but anticommutes with $A^{\text {odd }}$ if n is odd. Since $E_{2}^{p, q}=0$ unless $p=0$ or $p=n$, the only possible differential is d_{n}, which sends $E_{2}^{0, q}=A^{q}$ to $E_{2}^{n, q-n+1}=\mathbb{Q} x \otimes A^{q-n+1}$. And since we know by Hurewicz that $A^{q}=0$ for $0<q<n-1$ and that $\operatorname{dim} A^{n-1}=1$, there must be a class $y \in A^{n-1}$ such that $d_{n}(y)=x$. Furthermore, by the argument given in class (induction on q and the fact that d_{n} must be an isomorphism), $\operatorname{dim} A^{q}=0$ unless q is a multiple of $n-1$, and $\operatorname{dim}_{\mathbb{Q}} A^{k(n-1)}=1$ for all k. If n is odd, $n-1$ is even so the cup product powers of y are potentially non-zero. If y does not generate a polynomial ring, then there is some smallest k for which $y^{k} \neq 0$ and $y^{k+1}=0$. (No other dependence relations are possible since the powers of y live in different degrees.) By the derivation property, $d_{n}\left(y^{k+1}\right)=(k+1) y^{k} x \neq 0$, which contradicts the assumption that $y^{k+1}=0$.
Working over \mathbb{Z}, the argument for a polynomial ring breaks down, since y^{k} can be non-zero and still not generate $H^{k(n-1)}\left(\Omega S^{n}\right) \cong \mathbb{Z}$ integrally. (It may only be a multiple of a generator.)
3. Use the Serre spectral sequence in cohomology to give another proof (not dependent on Poincaré duality) that the cohomology ring of $\mathbb{C P}^{n}$ is $\mathbb{Z}[u] /\left(u^{n+1}\right)$, where u has degree 2 . Show similarly that the cohomology ring of $\mathbb{H} \mathbb{P}^{n}$ is $\mathbb{Z}[u] /\left(v^{n+1}\right)$, where v has degree 4. (Use the Hopf fibrations $S^{1} \rightarrow S^{2 n+1} \rightarrow \mathbb{C P}^{n}$ and $S^{3} \rightarrow S^{4 n+3} \rightarrow \mathbb{H} \mathbb{P}^{n}$.)
Solution. First consider the fibration $S^{1} \rightarrow S^{2 n+1} \rightarrow \mathbb{C P} \mathbb{P}^{n}$. Since he cohomology of S^{1} is torsion free, E_{2} of the Serre spectral sequence is $H^{p}\left(\mathbb{C P} \mathbb{P}^{n}, \mathbb{Z}\right) \otimes H^{q}\left(S^{1}, \mathbb{Z}\right)$, which is nonzero only for $q=0$ or 1 . Thus there is only one possible differential, d_{2}. Let y be the usual generator of $H^{1}\left(S^{1}, \mathbb{Z}\right)$, viewed as living in $E_{2}^{0,1}$. Let $d(y)=u \in H^{2}\left(\mathbb{C P}^{n}, \mathbb{Z}\right)$. Then $d(u y)=d(u) y+u d(y)=0+u \cdot u=u^{2}$. Similarly, $d\left(u^{2} y\right)=u^{3}$, etc. Since the spectral sequence must converge to the cohomology of $S^{2 n+1}, E_{\infty}^{p, q}=E_{3}^{p, q}=0$ unless $p=q=0$ or $p=2 n, q=1$. We claim this implies that u^{k} must generate $H^{2 k}\left(\mathbb{C P}^{n}, \mathbb{Z}\right)$ for $k \leq n$, and $H^{2 k+1}\left(\mathbb{C P}^{n}, \mathbb{Z}\right)$ must vanish for all k. Indeed, $H^{1}\left(\mathbb{C P}^{n}, \mathbb{Z}\right)=0$ either by simple connectivity or because there is nothing in bidegree $(-1,1)$ to kill it. And d_{2} must be an isomorphism from $\mathbb{Z} y$ to $E_{2}^{2,1}$. So $u \neq 0$ and generates $H^{2}\left(\mathbb{C P}^{n}, \mathbb{Z}\right) \cong \mathbb{Z}$. Next, $H^{3}\left(\mathbb{C P} \mathbb{P}^{n}, \mathbb{Z}\right)=0$ since there is nothing in bidegree $(1,1)$ to cancel it, and d_{2} must be an isomorphism from $E_{2}^{2,1}=\mathbb{Z} u y$ to $E_{2}^{4,0}=H^{4}\left(\mathbb{C P}^{n}, \mathbb{Z}\right)$. So H^{4} is infinite cyclic and generated by u^{2}. We continue this way to show that the powers of u generate all the cohomology ring. Of course $u^{n+1}=0$ since $\mathbb{C P}^{n}$ is $2 n$-dimensional and u^{n+1} lives in degree $2 n+2$. So $H^{*}\left(\mathbb{C P}{ }^{n}, \mathbb{Z}\right) \cong \mathbb{Z}[u] /\left(u^{n+1}\right)$.
The case of $\mathbb{H} \mathbb{P}^{n}$ is exactly analogous, except that since the fiber of the Hopf fibration $S^{24+3} \rightarrow$ $\mathbb{H P}^{n}$ is S^{3}, y is replaced by z, the usual generator of $H^{3}\left(S^{3}\right)$, and the only differential is d_{4}, of bidegree $(4,-3)$. The class u is replaced by $v=d_{4}(z) \in H^{4}\left(\mathbb{H P}^{n}\right)$. To get the induction started, $E_{2}^{p, 0}=H^{p}\left(\mathbb{H} \mathbb{P}^{n}, \mathbb{Z}\right)=0$ for $j=1,2,3$, either because the usual cell decomposition
of $\mathbb{H} \mathbb{P}^{n}$ has no cells in these dimensions or because there is nothing to kill them in the $q=3$ row.
