MATH 748R, Spring 2012 Homotopy Theory Homework Assignment #6: The Serre Spectral Sequence and Applications

Jonathan Rosenberg

Solutions

- 1. Show that an even-dimensional sphere cannot be the total space of a spherical fibration over a sphere (regardless of the dimensions of the fiber and the base). Also show that if an odd-dimensional sphere of dimension 2n+1 is the total space of a spherical fibration over a sphere, then the base must have dimension n + 1 and the fiber must have dimension n. (This case of course is possible; think of S³ as an S¹-bundle over S², or of S⁷ as an S³-bundle over S⁴.) Solution. First suppose that S²ⁿ is a fibration over S^k, with fiber S^m. We can't have k = 1, since any map S²ⁿ → S¹ is null-homotopic (since S¹ = K(Z, 1) and S²ⁿ is simply connected). So the base of the fibration is simply connected and we have a Serre spectral sequence H_p(S^k, H_q(S^m, Z)) ⇒ H_{p+q}(S²ⁿ, Z). We need something non-zero in E² in total degrees p + q = 2n, and everything else in other positive total degrees must die in E[∞]. Since we start with Z's in total degrees k, m, and k+m, and differentials have bidegree (-r, r 1), the only possibility is to have m = k 1 and k + m = 2n, which is impossible, since this implies 2m = 2n 1. The case where we start with an odd sphere S²ⁿ⁺¹ and n > 0 is similar,
 - but this time it is possible to have m = k 1 and k + m = 2n + 1, so 2m = 2n, m = n, and k = m + 1 = n + 1, as long as $d_{n+1} \colon E_{n+1,0}^{n+1} \to E_{0,n}^{n+1}$ is an isomorphism. Finally, there is one and only one case where the base is not simply connected: S^1 is a bundle over S^1 with fiber $S^0 = \mathbb{Z}/2$, via the covering map $S^1 \to S^1$ of degree 2. \Box
- 2. Recall that we used the Serre spectral sequence in homology to show in class that $H_j(\Omega S^n, \mathbb{Z}) = 0$ for j not a multiple of n-1 and that $H_j(\Omega S^n, \mathbb{Z}) \cong \mathbb{Z}$ for j a multiple of n-1. Use the Serre spectral sequence in *cohomology* to show that for n odd, $H^*(\Omega S^n, \mathbb{Q})$ is a polynomial ring on a single generator in degree n-1. What goes wrong with the argument if you use integral instead of rational coefficients?

Solution. Let n > 1 and let $A = \bigoplus_{j} H^{j}(\Omega S^{n}, \mathbb{Q})$ be the rational cohomology ring of ΩS^{n} . The Serre spectral sequence for the path fibration of S^{n} has $E_{2}^{p,q} = \bigwedge_{\mathbb{Q}}(x) \otimes A$ and must have $E_{\infty}^{p,q} = 0$ except with p = q = 0. Here $\bigwedge_{\mathbb{Q}}(x) = \mathbb{Q}[x]/(x^2)$ is the cohomology ring of S^n , with x in degree n, and the usual rules of graded commutativity apply, so x commutes with all of A if n is even, commutes with A^{even} if n is odd, but anticommutes with A^{odd} if n is odd. Since $E_2^{p,q} = 0$ unless p = 0 or p = n, the only possible differential is d_n , which sends $E_2^{0,q} = A^q$ to $E_2^{n,q-n+1} = \mathbb{Q}x \otimes A^{q-n+1}$. And since we know by Hurewicz that $A^q = 0$ for 0 < q < n-1 and that dim $A^{n-1} = 1$, there must be a class $y \in A^{n-1}$ such that $d_n(y) = x$. Furthermore, by the argument given in class (induction on q and the fact that d_n must be an isomorphism), dim $A^q = 0$ unless q is a multiple of n-1, and dim $\mathbb{Q}A^{k(n-1)} = 1$ for all k. If n is odd, n-1 is even so the cup product powers of y are potentially non-zero. If y does not generate a polynomial ring, then there is some smallest k for which $y^k \neq 0$ and $y^{k+1} = 0$. (No other dependence relations are possible since the powers of y live in different degrees.) By the derivation property, $d_n(y^{k+1}) = (k+1)y^k x \neq 0$, which contradicts the assumption that $y^{k+1} = 0$.

Working over \mathbb{Z} , the argument for a polynomial ring breaks down, since y^k can be non-zero and still not generate $H^{k(n-1)}(\Omega S^n) \cong \mathbb{Z}$ integrally. (It may only be a multiple of a generator.)

3. Use the Serre spectral sequence in cohomology to give another proof (not dependent on Poincaré duality) that the cohomology ring of \mathbb{CP}^n is $\mathbb{Z}[u]/(u^{n+1})$, where u has degree 2. Show similarly that the cohomology ring of \mathbb{HP}^n is $\mathbb{Z}[u]/(v^{n+1})$, where v has degree 4. (Use the Hopf fibrations $S^1 \to S^{2n+1} \to \mathbb{CP}^n$ and $S^3 \to S^{4n+3} \to \mathbb{HP}^n$.)

Solution. First consider the fibration $S^1 \to S^{2n+1} \to \mathbb{CP}^n$. Since he cohomology of S^1 is torsion free, E_2 of the Serre spectral sequence is $H^p(\mathbb{CP}^n,\mathbb{Z}) \otimes H^q(S^1,\mathbb{Z})$, which is nonzero only for q = 0 or 1. Thus there is only one possible differential, d_2 . Let y be the usual generator of $H^1(S^1,\mathbb{Z})$, viewed as living in $E_2^{0,1}$. Let $d(y) = u \in H^2(\mathbb{CP}^n,\mathbb{Z})$. Then $d(uy) = d(u)y + ud(y) = 0 + u \cdot u = u^2$. Similarly, $d(u^2y) = u^3$, etc. Since the spectral sequence must converge to the cohomology of S^{2n+1} , $E_{\infty}^{p,q} = E_3^{p,q} = 0$ unless p = q = 0 or p = 2n, q = 1. We claim this implies that u^k must generate $H^{2k}(\mathbb{CP}^n,\mathbb{Z})$ for $k \leq n$, and $H^{2k+1}(\mathbb{CP}^n,\mathbb{Z})$ must vanish for all k. Indeed, $H^1(\mathbb{CP}^n,\mathbb{Z}) = 0$ either by simple connectivity or because there is nothing in bidegree (-1, 1) to kill it. And d_2 must be an isomorphism from $\mathbb{Z}y$ to $E_2^{2,1}$. So $u \neq 0$ and generates $H^2(\mathbb{CP}^n,\mathbb{Z}) \cong \mathbb{Z}$. Next, $H^3(\mathbb{CP}^n,\mathbb{Z}) = 0$ since there is nothing in bidegree (1, 1) to cancel it, and d_2 must be an isomorphism from $E_2^{2,1} = \mathbb{Z}uy$ to $E_2^{4,0} = H^4(\mathbb{CP}^n,\mathbb{Z})$. So H^4 is infinite cyclic and generated by u^2 . We continue this way to show that the powers of u generate all the cohomology ring. Of course $u^{n+1} = 0$ since \mathbb{CP}^n is 2n-dimensional and u^{n+1} lives in degree 2n + 2. So $H^*(\mathbb{CP}^n,\mathbb{Z}) \cong \mathbb{Z}[u]/(u^{n+1})$.

The case of \mathbb{HP}^n is exactly analogous, except that since the fiber of the Hopf fibration $S^{24+3} \to \mathbb{HP}^n$ is S^3 , y is replaced by z, the usual generator of $H^3(S^3)$, and the only differential is d_4 , of bidegree (4, -3). The class u is replaced by $v = d_4(z) \in H^4(\mathbb{HP}^n)$. To get the induction started, $E_2^{p,0} = H^p(\mathbb{HP}^n, \mathbb{Z}) = 0$ for j = 1, 2, 3, either because the usual cell decomposition

of \mathbb{HP}^n has no cells in these dimensions or because there is nothing to kill them in the q=3 row. \Box