
MATH 748R, Spring 2012

Homotopy Theory

Homework Assignment #7:

Serre Classes and Applications

Jonathan Rosenberg

Solutions

1. Suppose X is a connected CW complex with π2k(X) ∼= Z for 2k ≥ 2 even and with π2k+1(X) =
0 for k ≥ 0. Thus the Postnikov system of X is built out of K(Z, 2k)’s. Show that the rational
cohomology ring of X is a polynomial ring over Q on generators in degrees 2, 4, 6, · · · . (The
theorem is not vacuous; it turns out, as we will see later, that BU satisfies the hypothesis.)
Hint: use what we proved about rational cohomology of K(Z, n).

Solution. We claim by induction on n that the rational cohomology ring of X2n, the Post-
nikov approximation to X based on the homotopy groups through degree 2n, is a poly-
nomial ring Q[xs, · · · , x2n]. The result then follows since H∗(X, Q) = lim

−→
H∗(X2n, Q) =

Q[xs, · · · , x2n, · · · ].

To begin the induction, note that X2 = K(Z, 2) ≃ CP∞, whose cohomology ring is a polyno-
mial ring on one generator x2 in degree 2. For the inductive step, assume the result is true
for X2n−2, and consider X2n. Since π2n−1(X) = 0, we have a principal fibration

K(Z, 2n) // X2n

��

X2n−2.

Apply the Serre spectral sequence in rational cohomology. Since all the rational cohomology of
both fiber and base is concentrated in even degrees, there cannot be any nonzero differentials,
so

H∗(X2n, Q) ∼= H∗(X2n−2, Q) ⊗ H∗(K(Z, 2n), Q),

even as Q-algebras. Since H∗(K(Z, 2n), Q) = Q[x2n], the inductive step follows. �
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2. The second stable homotopy group of spheres is πs
2 = lim

−→
πn+2(S

n), which by the Freudenthal

Suspension Theorem can be computed as π6(S
4). Investigate this group as follows.

(a) Observe from the fibration S3 → S7 → S4 that π6(S
4) ∼= π5(S

3), so that the stable
range is already achieved with π5(S

3).

Solution. The long exact sequence of the given fibration gives 0 = π6(S
7) → π6(S

4) →
π5(S

3) → π6(S
7) = 0, so π6(S

4) ∼= π5(S
3). �

(b) Recall that there is a homotopy fibration

K(Z, 2) → F
p
−→ S3, (1)

where p : F → S3 is the homotopy fiber of the map S3 → K(Z, 3) inducing an isomor-
phism on π3. Thus F is 3-connected. Show from the spectral sequence of (1) (using the
derivation property for the differentials and the fact that the cohomology ring of CP∞

is a polynomial ring on one generator in degree 2) that H2k(F, Z) = 0 for 2k even and
that H2k+1(F, Z) ∼= Z/k for 2k + 1 ≥ 5 odd. In particular, H5(F, Z) ∼= Z/2, which is
how we showed that π4(S

3) ∼= Z/2.

Solution. The spectral sequence for (1) in integral cohomology has Ep,q
2 = Hp(S3, Z) ⊗

Hq(CP∞, Z) = Z[x, y]/(y2), where x is a polynomial generator in bidegree (0, 2) and y is
a generator for H3(S3) in bidegree (3, 0). Furthermore, we know the spectral sequence
converges to the cohomology of the 4-connected space F . Thus x and y have to cancel
out. Since the spectral sequence has only two columns, with p = 0 and p = 3, the only
nonzero differential is d3, and we must have d3x = y (once sign conventions are properly
chosen). Then by the derivation property, d3(x

k) = k xk−1y, and d3 is injective on the

p = 0 column (except when q = 0) and we obtain E0,q
∞ = 0, q > 0, and E

3,2(k−1)
∞

∼= Z/k.
Thus H̃even(F, Z) = 0 and H2k+1(F, Z) ∼= Z/k. Since all the reduced cohomology is
torsion, the homology groups are the same, but shifted down by one in degree. �

(c) To compute π5(S
3), carry this process one step further; let p′ : F ′ → F be the homotopy

fiber of the map F → K(Z/2, 4) inducing an isomorphism on π4, and show that you get
a homotopy fibration

K(Z/2, 3) → F ′
p′

−→ F. (2)

Solution. By (b), H4(F, Z) ∼= Z/2, so also π4(F ) ∼= Z/2. Thus there is a map F →

K(Z/2, 4) inducing an isomorphism on π4; we let p′ : F ′ → F be its homotopy fiber.

The exact sequence of F ′
p′

−→ F → K(Z/2, 4) shows that we can also view p′ as a
homotopy fibration with homotopy fiber ΩK(Z/2, 4) = K(Z/2, 3). �

(d) To finish the calculation, use the spectral sequence of the fibration (2) and the fact
that F ′ is 4-connected. Modulo the Serre class of 2-primary finite groups, show p′ is a
homotopy equivalence, and thus that F ′ has no cohomology other than 2-primary torsion
below degree 7. Conclude that π5(S

3) is a 2-primary finite group.
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Solution. Modulo 2-primary torsion groups, K(Z/2, 3) is acyclic and so p′ is a homotopy
equivalence. Now H̃∗(F, Z) is concentrated in odd degrees and begins with Z/2 in degree
5 and Z/3 in degree 7. So modulo 2-primary torsion, H̃∗(F, Z) begins with a Z/3 in
degree 7. In particular, π5(S

3) = π5(F ) coincides modulo 2-primary torsion with H5(F
′),

and so π5(S
3) is a 2-primary torsion group. �

(e) Finally, compute the 2-primary torsion in π5(S
3) by using the spectral sequence of (2)

with F2 coefficients. You will need to observe that H i(F, F2) ∼= 0 for i = 6 and that
H i(K(Z/2, 3), F2) ∼= F2 for i = 3, 4, 5. This last fact can be deduced from path fibrations
and the facts that ΩK(Z/2, 3) ≃ K(Z/2, 2), ΩK(Z/2, 2) ≃ RP∞, H∗(RP∞, F2) ∼= F2[a],
where a is the canonical element in degree 1.

Solution. We know that π5(S
3) ∼= π5(F ) ∼= π5(F

′) ∼= H5(F
′, Z) ∼= H6(F ′, Z) (the last

step by the UCT, since the homology is torsion). On the other hand, we know H6(F, Z)
by (b), so we can compute H6(F ′, Z) using the spectral sequence for (2) once we compute
the low-dimensional cohomology of K(Z/2, 3).

The cohomology of K(Z/2, 1) = RP∞ (with F2 coefficients) is F2[a]. Then from the path
fibration of K(Z/2, 2), we get a spectral sequence with Ep,q

2 = Hp(K(Z/2, 2), F2)⊗F2
F2[a]

and with Ep,q
∞ = 0 unless p = q = 0. Furthermore, by Hurewicz and the UCT,

H1(K(Z/2, 2), F2) = 0 and H2(K(Z/2, 2), F2) ∼= F2. In fact, the integral (reduced) coho-
mology must begin with H3(K(Z/2, 2), Z) ∼= Z/2. So if x generates H2(K(Z/2, 2), F2),

d2(a) = x and d2(a
k) = kak−1x, which is zero if k is even and generates E2,k−1

2 if k is
odd. Similarly d2(ax) = x2, must be nonzero in order to kill off ax, etc., so all powers
of x are nonzero. Since a2 cannot survive to E∞, d3(a

2) = y for some y generating
H3(K(Z/2, 2), F2). Since a2 can’t survive to E∞, d3(a

2) = y must be nonzero and must
generate H3(K(Z/2, 2), F2). Since a2y must also die eventually, d3(a

2y) = y2, and d3 is
the only differential that can be nonzero on a2y, we similarly have y2 6= 0, etc. Finally,
d3(a

4) = 0 so a4 must map nontrivially under d5, which forces there to be another gen-
erator z of H∗(K(Z/2, 2), F2) in degree 5 (aside from xy = d2(ay)). So in low degrees
at least, H∗(K(Z/2, 2), F2) looks like a polynomial ring on x in degree 2, y in degree 3,
and z in degree 5.

Now we can compute the low-dimensional cohomology of H∗(K(Z/2, 3), F2) with the
same technique. The path fibration of K(Z/2, 3) gives a spectral sequence with Ep,q

2 =
Hp(K(Z/2, 3), F2) ⊗F2

Hq(K(Z/2, 2), F2) and with Ep,q
∞ = 0 unless p = q = 0. We

know Hq(K(Z/2, 3), Z) = 0 for 0 < q < 3 and H3(K(Z/2, 3), Z) ∼= Z/2 by Hurewicz, so

Ep,0
2

∼= F2 for p = 3 and Ep,0
2 = 0 for p = 1, 2. We also know that H4(K(Z/2, 3), Z) ∼=

Z/2, and reducing mod 2 shows that dimE4,0
∞ ≥ 1. Proceeding as before shows that

H∗(K(Z/2, 3), F2) is, at least in low degrees, a polynomial algebra on generators b in
degree 3, c in degree 4 and e in degree 5, with d3(x) = b, d4(y) = c, and d5(x

2) = e.

Finally, we can return to the spectral sequence of the fibration (2). Note that since F ′

is 4-connected, terms of total degree 3 or 4 in E2 cannot survive to E∞. In integral
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cohomology, the bottom row is Ep,0
2 = Hp(F, Z), which has a Z when p = 0, then a

Z/2 when p = 5 and a Z/3 when p = 7. The next row that is not identically zero is
Ep,4

2 = Hp(F, F2), which is F2 for p = 0, 4, 5 and 0 for p = 1, 2, 3, and 6. The only
way to get the necessary cancellation is to have d5 map H4(K(Z/2, 3), Z) isomorphically
onto H5(F, Z) ∼= Z/2. However there is no way to cancel H6(K(Z/2, 3), Z), which is
a 2-primary torsion group, since H7(F, Z) ∼= Z/3, so we get π5(S

3) ∼= H5(F
′, Z) ∼=

H6(F ′, Z) ∼= H6(K(Z/2, 3), Z). Since H6(K(Z/2, 3), F2) ∼= F2b
2 and βb = c, where β is

the Bockstein (which is a derivation), β(b2) = 2b(βb) = 0 and b2 is the reduction of an
integral class. So H6(K(Z/2, 3), Z) ∼= Z/2r for some r ≥ 1. To finish the calculation, we
need to check that the order of H6(K(Z/2, 3), Z) is not bigger than 2.

To do this, one can go back over the calculation of the cohomology of K(Z/2, 2) and
K(Z/2, 3) in low dimensions, but this time with integral cohomology instead of F2 co-
homology. Except for the Z in degree 0, the integral cohomology of K(Z/2, 1) is a
polynomial ring F2[a

2]. (The generator in degree 2 can be identified with the cup-square
of a ∈ H1(RP∞, F2), since this is what it reduces to mod 2.) Similarly, when we look
at the integral cohomology of K(Z/2, 2), x in degree 2 is not present but we do have
y of order 2 in H3. (This reduces mod 2 to the y we had before in F2 cohomology.)
In the spectral sequence in integral cohomology for the path fibration of K(Z/2, 3), as
before, d3(a

2) = y. But now the q > 0 rows look different from the q = 0 row, since the
former look like F2[x, y, z] ⊗F2

F2a
2 and the latter starts with y in degree 3. Note that

H4(K(Z/2, 2), Z) must vanish since there is nothing in Ep,3−p
2 that could kill it. The one

question mark is H5(K(Z/2, 2), Z). d3 is 0 on a4 in E0,4
3 but has to kill the Z/2 in E2,2

3 .
So the Z/2 in position (0, 4) survives to E4 and must map nontrivially under d5 (there is
nowhere else for it to go). That means that E4,0

5
∼= Z/2, but since we already cancelled

a Z/2 from E2,2
3 , that means by process of elimination that H5(K(Z/2, 2), Z) ∼= Z/4

(surprise!).

Finally, we’re down to computing H6(K(Z/2, 3), Z) from the spectral sequence of the
path fibration of K(Z/2, 3). In total degree 3 in E2, we have just a Z/2 in position (0, 3).
In total degree 4, we have just a Z/2 in position (4, 0), which cancels the Z/2 in position
(0, 3) via d4. In total degree 5, E5,0

2 = H5(K(Z/2, 3), Z) = 0 since there is nothing to
cancel it, so the only term of total degree 5 is the Z/4 in the (0, 4) position. In total degree
6, we have E6,0

2 , which we’re trying to compute, and E3,3
2 = H3(K(Z/2, 3), Z/2) ∼= Z/2.

Now d3 must send the generator of E5,0
3

∼= Z/4 to the generator of E3,3
3 , leaving behind

a Z/2 in E4,0
4 . The only place this can go in a later stage is to cancel H6(K(Z/2, 3), Z)

under d6, so H6(K(Z/2, 3), Z) ∼= Z/2 and π5(S
3) ∼= Z/2. �
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