MATH 748R, Spring 2012 Homotopy Theory Homework Assignment \#7:
 Serre Classes and Applications

Jonathan Rosenberg

due Friday, April 27, 2012

1. Suppose X is a connected CW complex with $\pi_{2 k}(X) \cong \mathbb{Z}$ for $2 k \geq 2$ even and with $\pi_{2 k+1}(X)=$ 0 for $k \geq 0$. Thus the Postnikov system of X is built out of $K(\mathbb{Z}, 2 k)$'s. Show that the rational cohomology ring of X is a polynomial ring over \mathbb{Q} on generators in degrees $2,4,6, \ldots$. (The theorem is not vacuous; it turns out, as we will see later, that $B U$ satisfies the hypothesis.) Hint: use what we proved about rational cohomology of $K(\mathbb{Z}, n)$.
2. The second stable homotopy group of spheres is $\pi_{2}^{s}=\underline{\longrightarrow} \pi_{n+2}\left(S^{n}\right)$, which by the Freudenthal Suspension Theorem can be computed as $\pi_{6}\left(S^{4}\right)$. Investigate this group as follows.
(a) Observe from the fibration $S^{3} \rightarrow S^{7} \rightarrow S^{4}$ that $\pi_{6}\left(S^{4}\right) \cong \pi_{5}\left(S^{3}\right)$, so that the stable range is already achieved with $\pi_{5}\left(S^{3}\right)$.
(b) Recall that there is a homotopy fibration

$$
\begin{equation*}
K(\mathbb{Z}, 2) \rightarrow F \xrightarrow{p} S^{3}, \tag{1}
\end{equation*}
$$

where $p: F \rightarrow S^{3}$ is the homotopy fiber of the map $S^{3} \rightarrow K(\mathbb{Z}, 3)$ inducing an isomorphism on π_{3}. Thus F is 3 -connected. Show from the spectral sequence of (1) (using the derivation property for the differentials and the fact that the cohomology ring of $\mathbb{C P}^{\infty}$ is a polynomial ring on one generator in degree 2) that $H^{2 k}(F, \mathbb{Z})=0$ for $2 k$ even and that $H^{2 k+1}(F, \mathbb{Z}) \cong \mathbb{Z} / k$ for $2 k+1 \geq 5$ odd. In particular, $H^{5}(F, \mathbb{Z}) \cong \mathbb{Z} / 2$, which is how we showed that $\pi_{4}\left(S^{3}\right) \cong \mathbb{Z} / 2$.
(c) To compute $\pi_{5}\left(S^{3}\right)$, carry this process one step further; let $p^{\prime}: F^{\prime} \rightarrow F$ be the homotopy fiber of the map $F \rightarrow K(\mathbb{Z} / 2,4)$ inducing an isomorphism on π_{4}, and show that you get a homotopy fibration

$$
\begin{equation*}
K(\mathbb{Z} / 2,3) \rightarrow F^{\prime} \xrightarrow{p^{\prime}} F . \tag{2}
\end{equation*}
$$

(d) To finish the calculation, use the spectral sequence of the fibration (2) and the fact that F^{\prime} is 4 -connected. Modulo the Serre class of 2 -primary finite groups, show p^{\prime} is a homotopy equivalence, and thus that F^{\prime} has no cohomology other than 2-primary torsion below degree 7 . Conclude that $\pi_{5}\left(S^{3}\right)$ is a 2-primary finite group.
(e) Finally, compute the 2-primary torsion in $\pi_{5}\left(S^{3}\right)$ by using the spectral sequence of (2) with \mathbb{F}_{2} coefficients. You will need to observe that $H^{i}\left(F, \mathbb{F}_{2}\right) \cong 0$ for $i=6$ and that $H^{i}\left(K(\mathbb{Z} / 2,3), \mathbb{F}_{2}\right) \cong \mathbb{F}_{2}$ for $i=3,4,5$. This last fact can be deduced from path fibrations and the facts that $\Omega K(\mathbb{Z} / 2,3) \simeq K(\mathbb{Z} / 2,2), \Omega K(\mathbb{Z} / 2,2) \simeq \mathbb{R} \mathbb{P}^{\infty}, H^{*}\left(\mathbb{R} \mathbb{P}^{\infty}, \mathbb{F}_{2}\right) \cong \mathbb{F}_{2}[a]$, where a is the canonical element in degree 1 .

