MATH 748R, Spring 2012 Homotopy Theory Homework Assignment \#8: Vector Bundles and Characteristic Classes

Jonathan Rosenberg

due Monday, May 14, 2012

1. A vector bundle $p: E \rightarrow X$ is called stably trivial if there is a trivial bundle E^{\prime} over X such that $E \oplus E^{\prime}$ is also trivial. While this concept makes sense for real bundles also, the rest of this problem will deal only with complex vector bundles for simplicity. If X is compact Hausdorff and $p: E \rightarrow X$ corresponds to the homotopy class of $f: X \rightarrow B U(n)$, where n is the rank of E, show that stable triviality is equivalent to $\varphi \circ f$ being null-homotopic for some N, where $\varphi: B U(n) \rightarrow B U(n+N)$ is induced by the inclusion $U(n) \hookrightarrow U(n+N)$ (via the block direct sum with the $N \times N$ identity matrix). Prove that if E is a line bundle, i.e., $n=1$, then E is stably trivial if and only if it is trivial. (Hint: use the cohomology of $B U(n+N)$ and what you know about the homotopy type of $B U(1)$.)
2. Now show that there is a stably trivial complex bundle of rank 2 over S^{5} that is not trivial. Here is an outline:
(a) First show that the homotopy groups of $U(2)$ are, except for π_{1}, the same as for S^{3}. Thus $\pi_{4}(U(2)) \cong \pi_{5}(B U(2)) \cong \mathbb{Z} / 2$. The bundle you want corresponds to the generator of this group.
(b) From the long exact sequence of the fibration $U(2) \rightarrow U(3) \rightarrow S^{5}$, show that $\pi_{4}(U(3))$ is either 0 or $\mathbb{Z} / 2$.
(c) Now you want to show that $\pi_{4}(U(3))=0$. You can do this as follows. First show that the universal cover of $U(3)$ is $S U(3) \times \mathbb{R}$, so it's enough to show that $\pi_{4}(S U(3))=0$. Also observe from the fibration $S U(2) \rightarrow S U(3) \rightarrow S^{5}$ that the integral cohomology ring of $S U(3)$ is an exterior algebra over \mathbb{Z} on generators x in degree 3 and y in degree 5 .
(d) Suppose you can show that the fibration $S U(2) \rightarrow S U(3) \rightarrow S^{5}$ does not split, i.e., that there is no map $S^{5} \rightarrow S U(3)$ such that the composite $S^{5} \rightarrow S U(3) \rightarrow S^{5}$ is the identity.

Deduce that that $\pi_{4}(S U(3))=0$. Hint: a splitting would be an element of $\pi_{5}(S U(3))$ mapping to the generator of $\pi_{5}\left(S^{5}\right)$. Then use the long exact sequence.
(e) To finish the argument and deduce that $\pi_{4}(S U(3))=0$ and thus that the bundle you constructed in (a) is nontrivial but stably trivial, you need to show that $S U(3)$ is not homotopy equivalent to the product $S^{3} \times S^{5}$. For this purpose consider the fibration $S O(3) \rightarrow S U(3) \rightarrow M^{5}$, where $S O(3)$ includes in $S U(3)$ as the real unitary matrices, and M is the five-dimensional homogeneous space $S U(3) / S O(3)$. Note that M is simply connected with $\pi_{2}(M) \cong \pi_{1}(S O(3)) \cong \mathbb{Z} / 2$, so by Poincaré duality, it has the same homology groups as S^{5} except for a $\mathbb{Z} / 2$ in degree 2 . In particular, it's rationally homotopy equivalent to S^{5}. So the map $\mathbb{R}^{3} \cong S O(3) \hookrightarrow S U(3)$ must be injective on $\pi_{3}(S O(3))=\mathbb{Z}$. Now if $S U(3)$ were homotopy equivalent to $S^{3} \times S^{5}$, then the map $\mathbb{R P}^{3} \cong S O(3) \hookrightarrow S U(3)$ would have to factor through the S^{3} factor (since any map $\mathbb{R}^{3} \rightarrow S^{5}$ is null homotopic), and since M is the homotopy cofiber of this map, M would have to split (up to homotopy) as a product of S^{5} and the cofiber X of a map $\mathbb{R P}^{3} \rightarrow S^{3}$. This is impossible since it would force M to have homology in dimension 7 , which is bigger than its dimension. (Apply the Künneth Theorem using the facts that $H_{5}\left(S^{5}\right) \cong \mathbb{Z}$ and $H_{2}(X) \cong \pi_{2}(X) \cong \mathbb{Z} / 2$.

