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Structure of the Talk

1 Introduce the electro-magnetic duality
2 Introduce the abelian geometric Langlands
3 Find a dictionary between these two
4 Generalize
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Review of Maxwell’s theory

Let M = R3,1, and let A be a connection on a U(1)-principal
bundle E of M, let F = dA. The equation of motion for Maxwell
theory reads

d ⋆ F = 0

Moreover the theory is invariant under the transformation F 7→ ⋆F
with ⋆2 = −1 for Lorentzian manifold. Thus if we set x0 be the
time-like coordinate and x i , i = 1, 2, 3 be the space-like coordinate,

Ei = F0i , Bi =
1
2
ϵijkFjk

Then this ⋆ duality induces the famous electric-magnetic duality

Ei 7→ Bi , Bi 7→ −Ei
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Action of Maxwell’s theory

Let M be a Lorentzian 4-manifold, the Lagrangian for the previous
equation of motion can be seen as

S(A) =
1

2e2

∫
X
F ∧ ⋆F

We can add a term that depends only on the topology of M and E ,
namely

∫
X F ∧ F as it’s essentially calculating c2

1 of the line bundle
associated to the U(1) bundle. So

S(A) =
1

2e2

∫
X
F ∧ ⋆F +

θ

8π2

∫
X
F ∧ F

has the same equation of motion. But it will affect the quantum
theory since we need

Z =
∑
E

∫
DAe iS(A)

and the second term gives weight to topologically different E .
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One key fact on some symmetry

Since now if we just do F 7→ ⋆F the symmetry is not preserved in
S(A), so the naive electro-magnetic duality failed on quantum level.

But note that
1

8π2

∫
X
F ∧ F ∈ Z,

and e2πiZ = 1, so if we changes θ → θ + 2π it won’t change the
quantum theory.

We may consider the 4-manifold M = R4 and the following action
since we change to Euclidean metric:

SE (A) =
1

2e2

∫
X
F ∧ ⋆F − iθ

8π2

∫
X
F ∧ F
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Deduction of symmetry

Then for the quantum theory, we have the following equations

Z =
∑
E

∫
DAe−SE (A)

=
∑
E

∫
DFe−SE (A)δ(dF ) (closed F)

=
∑
E

∫
DFDBe−SE (A)+i

∫
X BdF (delta function)

=
∑
E

∫
DBe−

1
2ê2

∫
G∧⋆G+ i θ̂

8π2
∫
X G∧G (Gaussian)

Here G = dB and θ̂
2π + 2πi

ê = −
(

θ
2π + 2πi

e

)−1
. So if we set

τ = θ
2π + 2πi

e , τ 7→ −1/τ and F 7→ G will be a symmetry in
quantum level for M = R4.

Note: Previous θ → θ + 2π will become τ → τ + 1.
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General manifold M

These two will form a PSL(2,Z) group, and the electro-magnetic
duality only study the duality of τ → −1/τ .

For general dimension four manifold M the second step fails as not
every closed 2-form is exact. One has to insert extra delta functions
in the summation, but luckily, Witten found that the effect of these
delta-functions can be reproduced by letting B to be a connection
1-form on an arbitrary principal U(1) bundle and sum over all
possible bundles. The proof can be found in his paper "On
S-duality in Abelian Gauge theory".
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S-duality conjecture

Montonen-Olive Duality conjecture

Let E be a G -principal bundle on a four-manifold X and let the
Yang-Mills action to be

S(A) =
1

2e2

∫
X

Tr(F ∧ ⋆F ) +
θ

8π2

∫
X

Tr(F ∧ F )

where F = dA+A∧A ∈ Ω2(ad(E )) is the curvature for connection
A. Then set ng be maximal multiplicity of edge Dynkin diagram.

Z (X ,G , τ) = Z (X , LG ,− 1
ngτ

), LG is Langlands dual

and moreover, for any observables O1, . . . ,On for the G -Yang-Mills,
there exists Õ1, . . . Õn and we have equation correlation function

⟨O1, . . . ,On⟩X ,G ,τ = ⟨Õ1, . . . Õn⟩X ,LG ,− 1
ngτ
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Observables

We have the Wilson operators and t ’Hooft operator. Wilson
operators consider a line in the space-time M3 × I :

For a connection A, the operator is

WR(γ) = TrR(Holγ(A))

where R is a representation of G . In physics it represents inserting
electric charges.

We have the t ’Hooft operator HR(γ), which are "magnetic
monopoles" or fields allowing singularity alongside γ.
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More mathematical interpretation

Consider the slice of Hilbert space H = L2(C(M3)) for each time,
where C(M3) denotes the collection of line bundles on M3 with
connections modulo gauge transformation. Then we just need to
look at how operators acts on this Hilbert space.

C(M3) ∼= Λ× T × V

1 Λ = H2(M,Z) lattice of possible line bundle
2 T = flat connections = H1(M,U(1)),
3 V an infinite dimensional vector space (don’t care about)
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t ’Hooft operator

We’re considering fields C(M × I\γ), i.e. the connections are
possibly singular along γ. So we have excised the knot, and this has
introduced a new boundary component of our 4-manifold: the link
of the knot (boundary of tubular neighborhood of the knot) which
looks like S2 × S1. Then we can look at connections which have a
specific integral over this. In particular, we can ask for

1
2πi

∫
S2

F = 1

We call this a magnetic monopole with charge 1, and since H
evolves over time with this monopole inserted, the resulting
transformation is called the t ’Hooft operator. Then one can find
that t ’Hooft operator simply shifts the Λ by [γ] ∈ H2(M,Z).
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Wilson operator

The Wilson operators are are eigenfunctions for the action of the
space of flat connections:

Tb = H1(M,U(1)) with discrete topology on U(1)

that acts on M by tensoring. The eigenfunctions are given by
multiplying by the monodromy along γ: by moving a flat
connection around γ we get a value in U(1) by taking monodromy.
So Wilson operators are charaters for the torus Tb.

We know from the short exact sequence 0 → Z → R → U(1) → 0
there is a morphism H1(M,U(1)) → H2(M,Z), there will be
decomposition of torus action in terms of this grading on the
Hilbert space

H =
⊕

e∈H2(M,Z)

He

and e are called electric charges.
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S-duality for Electrodynamics

The S-duality can be thought of as performing Fourier transform
with respect to our torus, specifically

L2(CU(1)(M)) ∼= L2(CU(1)∨(M)).

Specifically, we have on the F and ⋆F sides we have associated
grading

ΛB × TE × V and ΛE × TB × V

on the left the Wilson operators are diagonalized, and on the right
the t’Hooft operators are diagonalized.

In general non-abelian group G these are too hard to talk about, so
we need find an "easier" method of discovering the operators.
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Some preliminaries on algebraic geometry

On the other hand, the geometric Langlands correspondence come
from a very old story: the Abel Jacobi map.

For a smooth Riemann surface C , we can consider the Abel-Jacobi
map, by mapping a point p on C to its Jacobian
J(C ) = (H1,0)∗/(H1(C ,Z) by sending

i =

∫
p0

: C → J(C ); p 7→
∫ p

p0

But this depends on a choice of basepoint. Later on we usualy use
the Picard group
Pic(C ) = isomorphism classes of line bundles on curves by

i : C → Pic1(C ), p 7→ OC (p)

where Pici means the degree i line bundles.
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Hecke Correspondence

In a broader sense, we have

h : C × Picd → Picd+1 p × L 7→ L(p)

and this is generalized to the Hecke correspondence in the
Langlands program.

We may consider the category of G -local system on X , namely the
morphism ρ : π1(X ) → G . Then we have the following:

Baby Geometric Langlands correspondence

For an abelian group G , the induced map
i∗ : Loc(J(C ),G ) → Loc(C ,G ) is an isomorphism of category.

Proof: We know that π1(J) = H1(C ,Z) = π1(C )/[π1(C ), π1(C )],
so any morphism of π1(C ) to G will factors through the
abelianization π1(J).
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Hecke Correpondence, II

Reformulation of the baby case: for any abelian local system l on
C , there exists an abelian local system c(l) on Pic0(C ) such that

h∗(c(l)) = pr∗1 l ⊗ pr∗2 (c(l))

So that l is like an "eigenvalue", c(l) is like "eigenfunction", and in
general it’s called Hecke eigensheaf.

The Hecke correpondence will in general be more complicated than
this.

Hecke

xx

h

$$

C × Bun Bun

The geometric Langlands roughly states that h∗c(l) ∼= l ⊠ c(l) in
some sense.
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Relation with electro-magnetic duality

The idea of Kapustin-Witten is to use the topological field theory
we talked about last time on Maxwell theory, i.e. we take the
classical Yang-Mills action, add some fields, and find the SUSY
algebra. Then we have some Q with Q2 = 0 and we look at the
observables that are in the Q-cohomology of the theory.

Before, our space of fields consisted of a line bundle and a choice of
connection ∇ = d + A, now we add

1 1-form ϕ on the manifold (Higgs field)
2 a complex scalar u, and
3 four fermions (odd fields) (we will not pay much attention to

these).
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A-twist

Now, in the A-twist, the 3-manifold M3 gets attached to the
cohomology of this space: H•(C (M)). We have a much bigger
space of fields now, but it doesn’t actually make a difference at the
level of the cohomology, since introducing these new fields didn’t
change the topology of the space. But as it turns out, we don’t
want ordinary cohomology, we want cohomology which is
equivariant with respect to the automorphisms of the connections,
i.e. we want:

H = H•(fields/gauge equivalence) = H•
U(1)(C(M)).

So H = H•(Λ× T × V × BU(1)) = H•(Pic(M)).
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B-twist

As for the B-twist, we think of

∇+ iϕ = d + (A+ iϕ)

as a connection on a C∗-bundle rather than U(1)-bundle. This
looks like a flat C∗-local system on M if we think about the
Q-vanishing criterion. The local system π1(M) → C∗ factors
through its abelianization Λ = H1(M), so

LocC∗(M) ∼= Λ× |LocC∗(M)|

and this turns out to just be the degree 0 part of the duality
between these A and B-twists,

EM duality 19/24



Summary

The S-duality for Maxwell theory sums up to be the following

A-twist B-twist
topology of Pic topology of LocC∗(M)
Λ = H2(M,Z) T∨

C = |LocC∗(M)|
t’Hooft operator Wilson operators

Create magnetic monopole Create electric particle

If we set M = C × R, then we may recover our previous baby
Langlands correspondence.
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More general G -Yang-Mills

One should study not just 2 twists, but a CP1-family of twists,
given by Q = uQl + vQr . Since the things annihilated by Q are
also invariant under λQ, so we have this CP1 family. We use
t = u/v as the affine coordinate. It’s a miracle that the action of
the N=4 super-Yang-Mills, after the reduction, can be written as

I = {Q,V }+ iΨ

4π

∫
F ∧ F

The first part is Q-exact and the second part is topological, where

Ψ =
θ

2π
+

t2 − 1
t2 + 1

4πi
e2
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More general G -Yang-Mills

We are also adding the Higgs field ϕ and a scalar field σ. The
Q-closed condition will imply immediately the Kapustin-Witten
equations 

(F − ϕ ∧ ϕ+ tϕ)+ = 0
(F − ϕ ∧ ϕ− t−1ϕ)− = 0
D ⋆ ϕ = 0

Here ()+, ()− means the self-dual/anti-self-dual part of the 2-form.

The interesting case for geometric Langlands is t = i , where we can
set A = A+ iϕ with curvature F = dA+A2 and the equation is
just

F = 0, D ⋆ ϕ = 0.

The first of these equations is invariant under the complexified
gauge transformations, while the second one is not. The moduli
space is unchanged if one drops the second equation and considers
the space of solutions of the equation F = 0 modulo GC gauge.
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S-duality for this case

The S-duality map tells us the t = i , θ = 0 will be mapped to
t = 1, θ = 0. In that part the equation will be

F − ϕ ∧ ϕ+ ⋆Dϕ = 0, D ⋆ ϕ = 0

They resemble both the Hitchin equations in 2d and the
Bogomolny equations in 3d.
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Reduction to 2D

Now we consider X = Σ× C , where C and Σ are Riemann
surfaces. We will assume that C has no boundary and has genus
g > 1, while Σ may have a boundary.

As Vafa and collaboratos have figured out in 1994, the 2D field
thoery here is a σ-model whose target space is the Hitchin moduli
space MHit(G ,C ) of stable Higgs bundles, defined by

F − ϕ ∧ ϕ = 0
D ⋆ ϕ = 0

More precisely, this is true for t=1. It turns out that this 2D TFT is
an A-model.

On the other hand, if instead we choose the dual gauge group LG
and t = i , then the gauge theory on Σ turns out to be a σ-model
with target MHit(

LG ,C ), which happens to be a B-model 2D TFT.
EM duality 24/24


