
ON IMAGINARY ROOTS OF EQUATIONS

(translated from the French by J. Rosenberg)

Augustin Cauchy (published 1820)

That it’s always possible to decompose a polynomial [with real coefficients] into real
factors of the first or second degree, or, in other terms, that every equation involving a
[non-constant] rational function of the variable x can be satisfied by a[t least one] real
or imaginary1 value of this variable: this is a proposition that has already been proved
in various ways. Messrs. Lagrange, Laplace, and Gauss have used diverse methods for
establishing it, and I myself have given a demonstration founded on considerations anal-
ogous to those used by Gauss. But, in each of the methods which I have cited, one pays
special attention to the degree of the given equation, and sometimes in fact one has to go
back to the case of an equation of higher degree. These considerations seem foreign to
the question, and Mr. Lagrange already noted this (Théorie des Nombres, Part I, §14 )
in suggesting the idea of expanding things in [infinite] series. I have arrived, in following
the same idea, at a demonstration which seems as direct and simple as one could possibly
desire. I will explain it here in a few words.

Let f(x) be any [non-constant] polynomial [with real coefficients] in x. If one substitutes
for x an imaginary value u+ v

√
−1, one will have

(1) f(u+ v
√
−1) = P +Q

√
−1,

P and Q being real functions of u and v. In addition, if one writes2

(2) P +Q
√
−1 = R(cosT +

√
−1 sinT ),

R will be the modulus of the imaginary expression P +Q
√
−1, and its value will be given

by the equation

(3) R2 = P 2 +Q2.

J. de l’École Polytechnique, XVIIIe Cahier, 11 (1820), 411; Œuvres Complètes, IIe Série, Tome I,
258–263

1By an imaginary number, Cauchy means a complex number a + bi with any real a and b, not just

one with a = 0. The notation i was not yet standard for one of the square roots of −1, and Cauchy writes
simply

√
−1. Of course, −

√
−1 is also a square root of −1.

2using the polar form of a complex number
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Having said this, the theorem to be demonstrated is that one can always find real
values of u and v satisfying the two equations P = 0 and Q = 0, or equivalently, the single
equation R = 0. It’s important therefore to know what are the various values that the
function R can take on, and how this function varies with u and with v. We will do this
in what follows.

Suppose that the quantities u and v are increased by the amounts h and k, respectively,
and let ∆P , ∆Q, ∆R be the corresponding changes in P , Q, R. The equations (3) and
(1) become respectively

(4) (R+ ∆R)2 = (P + ∆P )2 + (Q+ ∆Q)2,

(P + ∆P ) + (Q+ ∆Q)
√
−1 = f(u+ v

√
−1 + h+ k

√
−1)

= f(u+ v
√
−1) + (h+ k

√
−1)f1(u+ v

√
−1)

+ (h+ k
√
−1)2f2(u+ v

√
−1) + . . . ,(5)

f1, f2, . . . designating new functions.3 To deduce from equation (5) the values of P + ∆P
and of Q+ ∆Q, it suffices to rewrite the right-hand side in the form p+ q

√
−1. We’ll do

this by substituting for f(u + v
√
−1) its value R(cosT +

√
−1 sinT ), and by setting, in

addition,

h+ k
√
−1 = ρ(cos θ +

√
−1 sin θ),

f1(u+ v
√
−1) = R1(cosT1 +

√
−1 sinT1),

f2(u+ v
√
−1) = R2(cosT2 +

√
−1 sinT2),

. . . .

After making these reductions, the equation (5) becomes

(P + ∆P ) + (Q+ ∆Q)
√
−1 = R cosT +R1ρ cos(T1 + θ) +R2ρ

2 cos(T2 + 2θ) + . . .

+
[
R sinT +R1ρ sin(T1 + θ) +R2ρ

2 sin(T2 + 2θ) + . . .
]√
−1,(6)

and one concludes that

P + ∆P = R cosT +R1ρ cos(T1 + θ) +R2ρ
2 cos(T2 + 2θ) + . . . ,

Q+ ∆Q = R sinT +R1ρ sin(T1 + θ) +R2ρ
2 sin(T2 + 2θ) + . . . ;(7)

(R+ ∆R)2 =
[
R cosT +R1ρ cos(T1 + θ) +R2ρ

2 cos(T2 + 2θ) + . . .
]2

+
[
R sinT +R1ρ sin(T1 + θ) +R2ρ

2 sin(T2 + 2θ) + . . .
]2
.(8)

3Since everything here is a polynomial, there are only finitely many terms before the series terminates,

and f1, f2, . . . are also polynomials.
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Suppose now that, for certain values of the variables u and v, the equation R = 0 is not
satisfied. If, under this hypothesis, R1 is not zero, the right-hand side of equation (8),
ordered according to increasing powers of ρ, becomes

R2 + 2RR1ρ cos(T1 − T + θ) + . . . ;

and consequently, the quantity
(R+ ∆R)2 −R2,

or in other words the change in R2 ordered according to increasing powers of ρ will have
leading term

2RR1ρ cos(T1 − T + θ).

If, under the same hypothesis, R1 is zero but R2 is non-zero, the change in R2 will have
leading term

2RR2ρ
2 cos(T2 − T + 2θ),

etc., etc. In general the leading term will have the form

2RRnρ
n cos(Tn − T + nθ),

if, for the given values of u and v, all the quantities R1, R2, . . . vanish through Rn−1. Thus
if one gives ρ very small positive values and θ arbitrary values, or, what amounts to the
same thing, if one gives h and k values which are numerically very small,4 then the change
in R2, in other words,

(R+ ∆R)2 −R2,

will be of the same sign as its leading term

2RR2ρ
2 cos(T2 − T + 2θ),

and since one can choose the value of θ to make the sign of the last factor cos(T2−T +2θ),
and thus of the whole expression, either positive or negative as one wishes, it follows that,
in the case where the particular values chosen for u and v do not satisfy the equation
R = 0, the corresponding value of R2 can be neither a maximum nor a minimum. Hence,
if we can assure ourselves, a priori , that R2 must have a minimum value, then we will
have to conclude that this minimum value is zero and thus that the equation R = 0 has a
solution.

Now, R2 will evidently have a minimum for some finite values of u and v if, for very
large numerical values5 of these variables , R2 will eventually be greater than any given
[positive] quantity. So if we let

u+ v
√
−1 = r(cos z +

√
−1 sin z),

4By this Cauchy means values very small in absolute value, but possibly negative.
5This means values large in absolute value.
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choosing very large numerical values of u and v will correspond precisely to taking r very
large. Therefore, in order to show that the equation R = 0 has a solution for some finite
values of u and v, it’s necessary and sufficient to show that the quantity R2 determined
by the equations

R2 = P 2 +Q2,

P +Q
√
−1 = f

[
r(cos z +

√
−1 sin z)

]
(10)

eventually becomes, for very large values of r, greater than any given number.
The above conclusion would persist more generally, whether or not the function f(x) is

defined everywhere. It requires only that P and Q be continuous6 functions of the variables
u and v and that the quantities R1, R2, . . . should never become infinite for finite values
of the variables.

Suppose that the function f(x) is given as a polynomial7

f(x) = a0x
n + a1x

n−1 + · · ·+ an−1x+ an.

The equations (10) give

P +Q
√
−1 = f

(
r cos z + r sin z

√
−1
)

= a0r
n cosnz + a1r

n−1 cos(n− 1)z + · · ·+ an−1r cos z + an

+
[
a0r

n sinnz + a1r
n−1 sin(n− 1)z + · · ·+ an−1r sin z + an

]√
−1,

P = a0r
n

[
cosnz +

a1
a0

cos(n− 1)z

r
+ · · ·+ an−1

a0

cos z

rn−1
+
an
a0

1

rn

]
,

Q = a0r
n

[
sinnz +

a1
a0

sin(n− 1)z

r
+ · · ·+ an−1

a0

sin z

rn−1

]
,

R2 = P 2 +Q2 = a20r
2n

[
1 + term in

1

r
+ · · ·+

(
an
a0

)2
1

r2n

]
.

Now it’s clear that for large values of r, the above value of R2 will be larger than any given
quantity. Therefore, in view of what was said above, one can find real values of u and v
solving the equation R = 0, or equivalently, the two equations

P = 0, Q = 0.

By the way, the above method doesn’t just apply to polynomial functions, and can
be used also to determine for more general functions whether it’s possible to solve the
equation f(x) = 0 for some real or imaginary value of x.8

6Cauchy seems to be assuming the [false] assertion that any continuous function can be expanded in a
convergent power series. This is of course not a problem for polynomials.

7presumably non-constant, so that one should assume a0 6= 0. In addition, all the coefficients are to

be real.
8Cauchy seems to have in mind the case of a rational function, i.e., a ratio of two polynomials, but of

course to solve
p(x)
q(x)

= 0, it’s enough to solve p(x) = 0. If f is just an entire function, i.e., a function that

can be expanded in a power series that converges everywhere, it’s not necessarily true that f(x) = 0 has

to have a solution. For instance ex = 0 has no solutions even with x complex.


