The "New Algebra" of François Viète

Book IV [translated by J. Rosenberg]

Zetetic [Inquiry, from Greek zētētikos, from zēteō to seek] XI

To find three [distinct] right triangles [with integral sides]
with the same area.

Let the altitude of one of the triangles be 2 BA , the base $\mathrm{D}^{2}+\mathrm{BD}$; the altitude of the second 2DA, the base $B^{2}+B D$; the altitude of the third $2 B A+2 D A$, the base $D B$. Then the three triangles all have the same area, namely

$$
\mathrm{BA}\left(\mathrm{D}^{2}+\mathrm{BD}\right)=\mathrm{DA}\left(\mathrm{~B}^{2}+\mathrm{BD}\right)=(\mathrm{BA}+\mathrm{DA})(\mathrm{DB})=\mathrm{ABD}(\mathrm{~B}+\mathrm{D}) .
$$

By the previous zetetic, the quantities B and D can be chosen so that $B^{2}+D^{2}+B D$ is a perfect square, say A^{2}. [To do this, write $\mathrm{B}^{2}+\mathrm{D}^{2}+\mathrm{BD}=(\mathrm{D}+\mathrm{C})^{2}=\mathrm{D}^{2}+2 \mathrm{DC}+\mathrm{C}^{2}$, so $\mathrm{B}^{2}-\mathrm{C}^{2}=(\mathrm{B}-\mathrm{C})(\mathrm{B}+\mathrm{C})=$ $D(2 C-B)$. Take $B+C=D$ and $B-C=2 C-B$, or $2 B=3 C, D=5 B / 3$.] Then the base of the first triangle is $D^{2}+B D=A^{2}-B^{2}$, the base of the second is $B^{2}+B D=$
$A^{2}-D^{2}$, and of the third is $B D=(B+D)^{2}-A^{2}$. Now we have
$\left(A^{2}-B^{2}\right)^{2}+(2 B A)^{2}=A^{4}-2 A^{2} B^{2}+B^{4}+4 A^{2} B^{2}=A^{4}+2 A^{2} B^{2}+B^{4}=\left(A^{2}+B^{2}\right)^{2}$
so the hypotenuse of the first triangle is $A^{2}+B^{2}$. Similarly the hypotenuse of the second triangle is $A^{2}+D^{2}$, and the hypotenuse of the third is $(B+D)^{2}+A^{2}$. Thus we've accomplished what was required. For example, take $B=3, D=5$. Then $B^{2}+D^{2}+B D$ is $9+25+15=49=7^{2}$, so take $A=7$.
The first triangle has base $7^{2}-3^{2}=40$, altitude $2 \cdot 7 \cdot 3=42$, hypotenuse $7^{2}+3^{2}=58$.
The second triangle has base $7^{2}-5^{2}=24$, altitude $2 \cdot 7 \cdot 5=70$, hypotenuse $7^{2}+5^{2}=74$.
The third triangle has base $8^{2}-7^{2}=15$, altitude $2 \cdot 7 \cdot 8=112$, hypotenuse $7^{2}+8^{2}=113$.

