
These are ad hoc notes used for the Sept. 11 & 18 RIT lectures
at UMD, somewhat tidied-up and extended for context and
orientation. Tristan Hübsch, thubsch@howard.edu.1 Telegraphic Intro to QM

1900: Planck’s resolution of (what Ehrenfest would in 1911 call the “ultraviolet catastrophe”): Sources
(so-called “black-bodies”) emit electromagnetic radiation in 2π-integral multiples of (Planck’s) constant, ℏ,
of energy (E) over time (t):

∫
dt Eγ = n(2πℏ), n ∈ N . Note: ℏ ∼ 10−34 (kg m2

s = J s)

1905: Einstein’s solution of the photoelectric effect: electromagnetic radiation is absorbed (by charged
particles) at energies that are integral multiples of ℏω, where ω = 2πν= “circular frequency” (=angu-
lar velocity) of the radiation:

(
E = nℏω

)
γ

!=
(
KE = 1

2mev
2
)
e

. The linear momentum imparted on the

charged particle that absorbed the radiation then must be
(
p=E/c=ℏω/c=2πℏ/λ

)
γ

!=
(
p=mev

)
e

.

Left-hand side is the special case of the general relation E2 = p2c2 +m2c4
mγ!0−−−−! E = pc.

1913: Bohr’s solution to the stability of atoms: the angular momentum of the (stably, non-radiating) or-
biting electron (in his postdoc employer, Ernest Rutherford’s, “planetary model of the atom”):1 ℓ = nℏ .
(Added bonus: The orbiting electrons have discrete energies, En = −E0/n

2, so the hydrogen atom emits
radiation from discrete (n! n′) transitions, recovering Balmer’s formula “on the nose.”)

1924: In his PhD thesis, de Broglie proposed that all forms of matter (radiation included) have both
particle-like and wave-like characteristics, so λdB :=2πℏ/p , i.e., p=2π ℏ/λdB is universal.

The above make statements about properties (energy, linear momentum) of the material things, not
about the things themselves — representable by this newfangled “wave.” (Start with Ref. [1], perhaps.)

1.1 Waving

This “material wave,” ψ(x, t), was fashioned with intuition developed from past experience with fluid dy-
namics and electromagnetism: Maxwell’s 1965 unification of electrodynamics laws predicted electromag-
netic waves, detected by Herz (1988), where intensity (∝ |E⃗|2, |B⃗|2) definitely is measurable.

|ψ(x, t)|2 is measurable: For a free particle, |ψ(x, t)|2 must be x- and t-translationally invariant.

▶ t = t0: ψ(x+ ξ, t0)
!= eiξ f(x)ψ(x, t0).

ψ(x+ ξ, t0) = ψ(x+ ξ, t0) = ψ(x, t0) + ξ ψ′(x, t0) +
1
2ξ

2 ψ′′(x, t0) + . . . (1.1)

eiξf(x)ψ(x, t0) =
[
1 + iξf(x)− 1

2ξ
2f2(x) + . . .

]
ψ(x, t0) (1.2)

Comparing order-by-order in ξ:

ξ1 : ψ′(x, t0)
!= if(x)ψ(x, t0), ψ′′(x, t0)

!= if ′(x)ψ(x, t0) + if(x)ψ′(x, t0); (1.3)

ξ2 : ψ′′(x, t0)
!= −f2(x)ψ(x, t0). (1.4)(

ψ′′(x, t0) = −f2(x)ψ(x, t0)
)

!= if ′(x)ψ(x, t0) + if(x)
(
ψ′(x, t0) = if(x)ψ(x, t0)

)
, (1.5)

!=
(
if ′(x)− f2(x)

)
ψ(x, t0) (1.6)

That is, f ′(x) = ±k = const. (1st sign choice.)

1Per https://en.wikipedia.org/wiki/Bohr_model, this is the result of combining a 4th and 5th postulate! Whew.
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▶ x = x0: ψ(x0, t+ τ) != eiτ g(t)ψ(x0, t) implies g(t) = ±ω = const. (2nd sign choice⇝ relative choice!)

▶ Combining: ψ(x, t) = ψ0 e
i(±kx−ωt) — “plane wave,” the simplest kind of wave.

ψ0 e
i(kx−ωt) moves to the right (∆x > 0) as ∆t > 0, ψ0 e

−i(kx+ωt) moves to the left (∆x < 0) as ∆t > 0. In
higher dimensions, kx ! k⃗·⃗r, which is a scalar product, and invariant with respect to the full orthogonal
symmetries of positional- and momentum-space; the sign of ±k⃗·⃗r picks one of two linearly independent
solutions. In fact, the combinations (±k⃗·⃗r− ωt) are invariant with respect to the larger, Lorentz group of
orthogonal transformations in spacetime, (⃗r, t), and its dual (wave-vector)-frequency space, (k⃗ , ω). Both
wave-functions correspond to the same action and Lagrangian. However, incoming and outgoing solutions
can correspond to absorption and emission, which need not be symmetric.

—·⋄♦⋄·—

Fixing the signs: using some classical (= pre-quantum) physics, and connecting to it!

▶ 3.39 centuries ago: F = ma = mẍ [Newton, 1686].
Multiply by ẋ and integrate, t ∈ [ta, tb]:

Then,
∫ tb
ta

dt (Fẋ = F dx
dt ) =

∫ b
a dxF =Wa!b = work done by the force F over distance x ∈ [a, b].

By Newton, this equals to
∫ tb
ta

dt
[
mẍẋ = d

dt

(
1
2mẋ

2
)]

=
∫ ?b
?a

d
(
1
2mẋ

2
)
: define: KE := 1

2mẋ
2 .

So, Wa!b = KEb −KEa: “work-energy threorem”

For (working against) “conservative forces,” F = −dV
dx , so Wa!b = −(Vb − Va) = KEb −KEa.

So, total energy, E = KE + V , is conserved. (V = PE)

▶ 2 centuries ago: Hamilton (after incremental and meandering development): Find a functional,
S[x(t)] :=

∫
dt L

(
x(t), ẋ(t), t; . . . ) such that

(
δS[x(t)] = 0

)
⇒

(
F = mẍ

)
,

where δx(t) is a variation of the (choice of the) function x(t): x(t) ! x(t)+δx(t).

δS[x(t)] = δ

∫ tf

ti

dt L =

∫ tf

ti

dt
[∂L
∂x

δx+
∂L

∂ẋ

(
δẋ = δ

dx

dt
=

d

dt
δx

)]
=

∫ tf

ti

dt
[∂L
∂x

δx+
∂L

∂ẋ

d

dt
δx

]
, (1.7)

=

∫ tf

ti

dt
[∂L
∂x

δx−
( d

dt

∂L

∂ẋ

)
δx

]
+
[(∂L
∂ẋ

δx
)tf
ti

= 0 : δx(ti) = 0 = δx(tf )
]

(1.8)

=

∫ tf

ti

dt
[∂L
∂x

− d

dt

∂L

∂ẋ

]
δx != 0, ⇒ d

dt

∂L

∂ẋ
!=
∂L

∂x
. (1.9)

Now, construct such an “L” from KE and PE: write L = αKE + β PE, so

d

dt

∂L

∂ẋ
= α

d

dt

[∂KE
∂ẋ

=
∂

∂ẋ

(
1
2mẋ

2
)
= mẋ =: p

]
= αmẍ, (1.10)

∂L

∂x
= β

∂PE

∂x
= β

∂V

∂x
= −βF. (1.11)

αm ẍ = −β F, ⇒ β = −α, L = KE − PE . (1.12)

Importantly (writing PE = V (x), as usual):(
L := 1

2mẋ
2 − V (x)

)
̸=

(
E := 1

2mẋ
2 + V (x)

)
, u[L] = u[E] =

kg m2

s2
!! (1.13)

S[x(t)] :=
∫
dt L(x, ẋ, t; . . . ) , u[S] =

kg m2

s
!! (1.14)
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The Lagrangian function, L(x, ẋ; . . . ), does have the units of energy, but differs crucially from total energy,
E=KE+PE, by being not the sum but the difference, L=KE−PE. In turn, Hamilton’s “action (func-
tional)” (a.k.a. “Hamilton’s principal function”), S[x(t); . . . ] is not even an energy of any sort (even Fields-
and Abel-laureates’ speaking and writing to the contrary) — wrong units, and it is the time-integral of
the Lagrangian function — not of the total energy. Of course, [L]V=0 = [E]V=0 — but even so only non-
relativistically! In ideal gasses, iS[x(t)]/ℏ ⇝ i(E/ℏ)t ⇝ E/(kBT ), where T is the temperature (ensemble-
average of the kinetic energy) and kB the Boltzmann conversion constant: a possible source of the kerfuffle.
BTW,

∫
dt(E + L) =

∫
dt mẋ2 =

∫
dt ẋ(mẋ = p) =

∫
dt ẋπ, so∫

dt (L = KE−PE) =

∫
dt
(
ẋ p− (E = KE+PE)

)
, L(x, ẋ) = ẋ p− E(x, p) , (1.15)

the last relationship being an example of a Legendre transformation.

Back to 1 century ago: (fixing the relative sign choice)
The “free particle wave,” ψ(x, t) = ψ0 exp{i(±kx− ωt)}, where:

k x =
(∫

dx p =

∫
dt ẋ p

)
/ℏ, for p = ℏk = const., ∂p

∂x = 0, (1.16)

ω t =
(∫

dt E
)
/ℏ, for E= ℏω = const., ∂E

∂t = 0, (1.17)

prompts a more general candidate, ψ(x, t)=ψ0 exp{i
∫
dt

(
ẋp−E

)/
ℏ} =ψ0 e

i
∫
dtL/ℏ , even when p,E are

not constant. In turn, any less simplistic wave-function can be obtained using these plane waves, by
superposition — i.e., via the integral Fourier transform, ψ(x, t) =

∫
dk

∫
dω χ(k, ω) ei(kx−ωt).

Quantum Novelties: (operators, values and vectors — oh, my!)
This “matter wave,” ψ(x, t) serves nicely:

1. ℏ
i
∂
∂x ψ(x, t) = (ℏk=p)ψ(x, t): the observable (to be measured) value, p, is obtained by acting with

a differential operator, p ⇝ p̂ := ℏ
i
∂
∂x ! This does not commute with x̂, which in turn is simply

multiplicative: x̂·ψ(x, t) = xψ(x, t) is ordinary product:

[ x̂ , p̂ ]ψ(x, t) = x̂
ℏ
i

( ∂

∂x
ψ(x, t)

)
− ℏ
i

( ∂

∂x

(
x̂ ψ(x, t)

))
= iℏψ(x, t) (1.18)

This having to hold on all wave-functions, we obtain the canonical commutation relations:

[ x̂ , p̂ ] = iℏ 1 , (1.19)

and the (1925) Heisenberg & Born (& Jordan): matrix (quantum) mechanics.
Physical observables, Ô, (such as momentum, energy,. . . , all stemming from real functions of x, p)
are assigned operators, the eigenvalues of which are being observed in concrete measurements. (This
is known as the “Born postulate.”)

(a) In classical mechanics (CM), for real functions A = A(x, p) and B = B(x, p):

{ , }PB 7! 1
iℏ [ , ]

{
A , B

}
PB

:=
∂A

∂x

∂B

∂p
− ∂B

∂x

∂A

∂p
. e.g.

{
x, p

}
PB

= 1, ∈ R. (1.20)

[
Â , B̂

]
:= Â B̂ − B̂Â. e.g.

1

iℏ
[
x̂, p̂

]
= 1, Hermitian. (1.21)
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So (with H(x, p) = KE+PE the classical Hamiltonian),

dA

dt
= −

{
H , A

}
PB

+
∂A

∂t
7!

dÂ

dt
=
i

ℏ
[
Ĥ , Â

]
+
∂Â

∂t
. (1.22)

(b) No “classical-to-quantum” assignment, O ! Ô, can be unique: it depends (at the very least)
on the ordering of x, p̂. For example, px2 = x2p (in CM) but p̂x̂2 = x̂2p̂ − 2iℏ x̂ (in QM), and
(increasingly) higher-power monomials differ (increasingly) more — and are far from “trivial”
in any sense; e.g., [2,3].

The “QM!CM” limit is however expected to be unique, although “many-to-one.”

(c) Introduce a particular assignment rule (“polarization”): A ! ϖ(A) = Â [4,5]. Then,

iℏϖ
({

A , B
}
PB

)
−
[
ϖ(A) , ϖ(B)

]
∀A,B (1.23)

measures the “anomaly” of the quantum system obtained by the “polarization” ϖ.

2. iℏ ∂
∂x ψ(x, t) = (ℏω = E)ψ(x, t): E ⇝ Ĥ := iℏ ∂

∂t , producing (1926, Schrödinger equation.):

iℏ
∂

∂t
ψ(x, t) = Ĥψ(x, t) =

[ 1

2m
p̂2 + V (x)

]
ψ(x, t), (1.24)

iℏ
∂

∂t
ψ(x, t)

#1.
=

[
− ℏ2

2m

∂2

∂x2
+ V (x)

]
ψ(x, t) . (1.25)

The equation (1.25) (with boundary conditions) is a linear PDE, so its solutions form a vector space,
Vψ: if ψ1(x, t) and ψ2(x, t) are two solutions, so is their superposition, c1ψ1(x, t) + c2ψ2(x, t), ci ∈ C.
The ψ(x, t)’s are vectors in Vψ. Two solutions, ψ1(x, t), ψ2(x, t), are linearly independent precisely if(

c1ψ1(x, t) + c2ψ2(x, t) = 0
)

⇒
(
c1 = 0 = c2

)
. (1.26)

Then, dim(Vψ) is the smallest number of linearly independent ψ(x, t)’s, which may be finite, count-
ably infinite, uncountable or hybrid — typically determined by the boundary conditions.

The action Ô : Vψ ! Vψ ⇒ matrix representation for Ô in #1. ! eigenvalues and eigenvectors .

3. Quantum apocrypha: in 1925, Hilbert explained Heisenberg & Born that they have matrices — and
told them to look for their generating differential equation. . .

4. Every observable of interest (assigned a Hermitian A† = A) operator, has its eigenvectors, which we
can label by their eigenvalue: |a⟩ : A|a⟩ = a|a⟩. The wave-functions, ψ(x, t), are similarly labeled
by x, the eigenvalues of their position (Hermitian) operator, X̂, so they are also eigenvectors of X̂?
Well, not quite: Rather, the eigenvector space, VA =

{
|a⟩ : A|a⟩ = α|a⟩

}
, of every operator, Â, has

its formal dual (antilinear functionals on VA), V ∨
A =

{
⟨a| : ⟨a|b⟩ = f(a, b) ∈ C

}
and so ⟨a|A = α⟨a|,

so that the (literature-standard [6]) definition is

ψ(x, t) :=
〈
x
∣∣ψ(t)〉 , X̂|x⟩ = x|x⟩; Ô·ψ(x, t) :=

〈
x
∣∣ Ô ∣∣ψ(t)〉 . (1.27)

This does make ψ(x, t) a C-number-valued function (as it should be), but forces the action of Ô on
ψ(x, t) to be: • right on |ψ⟩ ∈ Vψ, but • left on ⟨x| ∈ V ∨

X the positional (or momentum, or. . . ) space.
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(a) This allows us to re-define Vψ =
{
|ψ(t)⟩ : iℏ ∂

∂t

∣∣ψ(t)〉 =Ĥ
∣∣ψ(t)〉 } — the Hilbert space of

“pure”
states.

(There is a perfect reason why t cannot be the eigenvalue of a “time-operator” and x and t are on
completely different footing in QM, but it needs more background. . . see, e.g., Ref. [6, § 12.3].)

(b) Now can “switch” from the wave-function in the position-representation, ψ(x, t)=
〈
x
∣∣ψ(t)〉 to

the wave-function in the momentum-representation, ψ(p, t)=
〈
p
∣∣ψ(t)〉. (One is the integral

Fourier-transform of the other.) . . . or to any other representation defined by the variable change
(x, p) ! (x, p), where x = x(x, p) and p must be defined so [̂x, p̂] = iℏ; see [6, § 4.1].
In the momentum representation, p̂ = p is multiplicative, while x̂ = iℏ ∂

∂p , to preserve (1.19).

5. The ψ(x, t) of “well localized things” are square-integrable, since ρ(x, t) := |ψ(x, t)|2 is the intensity,
i.e., probability density of the wave-function:

∫∞
−∞ dx |ψ(x, t)|2 = 1 , “the object must be somewhere.”

Also, ⟨χ|[· · ·] :=
∫
dxχ∗(x, t)[· · ·], (antilinear functional over Vψ) so ⟨χ|ψ⟩ :=

∫
dx χ∗(x, t)ψ(x, t) is

a sesquilinear scalar product: which turns Vψ into a Hilbert space. Observables acting on it are
represented by (bounded?,. . . ) operators, Ô, which are supposed to have real eigenvalues — to be
measurable in the real world. This is insured by Ô being Hermitian, but may not be necessary [7].

Expectation values: Ô⇝⟨Ô⟩ψ :=⟨ψ|Ô|ψ⟩. The simplest operator, Ô ! 1 (do nothing, just ob-
serve), asks “does the particle even exist?” To which a nonzero ρ(x, t) := |ψ(x, t)|2 provides the
probability distribution/density (a.k.a. “density matrix”) of finding the particle at the location (x, t).
Call ψ(x, t) the “wave-function” from now on; it’s square being a probability density and akin to am-
plitudes of waves (which scale a “waving” functions, such as sin(kx+δ)), it may also be thought of as
a probability amplitude.

6. Entanglement, non-Hermitian observables, “non-Hermitian PT-symmetric QM,” 2. . . (lots more!!)

Physics Models, in General:

1. Domain-space, D: t ∈ R1 in CM and QM (string theory: D = Σ1,1
g — Deligne-Mumford U.C.).

2. Target-space, T: x ∈ R1 for 1d CM and QM, r⃗ ∈ R3 for 1d CM and QM, . . .
3. A mapping D ! T: in CM and QM, x(t) and r⃗(t).
4. An “action functional,” S[x(t);F (t)], where F (t) are “external” forces/cources.

#3.+#4. can determine
T in #2. dynamically.

Then, CM: δS[x(t);F (t)] = 0. However, the same data actually leads to much more:

5. The path-integral: Z[ξ(t);F (t)] :=
∫∫∫∫∫∫

D[x] eiS[x(t)+ξ(t);F (t)]/ℏ =: eiSeff [ξ(t);F (t)]/ℏ;
δ

δF (t1)
· · · δ

δF (tk)
Z[ξ(t);F (t)] =

〈
x(t1) · · ·x(tk)

〉
[Dirac, 1933; . . . [8–12]]

The functional Z[ξ(t)] includes all possible histories x(t) from known initial to final conditions (emission
& detection), and so a priori can be used to “extract” any and all information about the full quantum
behavior. It also happens to satisfy a Schrödinger equation, so is an a priori prescription how to construct
a quantum theory out of a classical one [8–12]. It is however not a rigorously well-defined integral.

QM ⇒ EM: Following Schrödinger’s unpublished work [12, § 5.1], as only |ψ(x, t)|2 is deemed observable,
than the ψ(x, t) ! eiφ(x,t)ψ(x, t) change of variables cannot be observable even for arbitrary φ(x, t).

2This particular class of models [7] seems to be very much en vogue: one considers an incomplete system, the interaction of
which with the “excised/ignored/unknown” complement is modeled by non-Hermitian (“dissipative/decay/lossy”) terms in the
Hamiltonian (= total energy) and/or other observables of interest.
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▶ Disaster: But then,

iℏ
∂

∂t
ψ

ψ(x, t) ! eiφ(x,t)ψ(x, t)

=
[
− ℏ2

2m

∂2

∂x2
+ V (x, t)

]
ψ, (1.28)

iℏ
∂

∂t

(
eiφψ

)
=

[
− ℏ2

2m

∂2

∂x2
+ V (x, t)

](
eiφψ

)
(1.29)

iℏ
(
eiφ i

∂φ

∂t

)
ψ + iℏ eiφ

∂ψ

∂t
= − ℏ2

2m

∂

∂x

((
eiφ i

∂φ

∂x

)
ψ + eiφ

∂ψ

∂x

)
+ V (x, t) eiφψ

= − ℏ2

2m

[
eiφ

(
i
∂φ

∂x

)2
ψ + eiφ

(
i
∂2φ

∂x2

)
ψ + 2eiφ

(
i
∂φ

∂x

)(∂ψ
∂x

)
+ eiφ

d2ψ

dx2

]
+ V (x, t)eiφψ (1.30)

so, using the original equation (1.25) and upon dividing by ψ(x, t), we obtain:

∂φ

∂t
=

ℏ
2m

[
i
∂2φ

∂x2
−
(∂φ
∂x

)2
+ 2i

∂φ

∂x

∂ ln(ψ)

∂x

]
. (1.31)

This result is absolutely disastrous! Not only did the (unmeasurable!) phase φ(x, t) turn out not to be an
arbitrarily selectable function of space and time, but it would have to satisfy a differential equation (1.31)
which moreover depends on the particular wave-function ψ(x, t)!

▶ Repair: To “fix” this disaster, we must modify the Schrödinger equation, but in a way that does not
obliterate the argumentation that brought us (1.25). To this end we note that the p ⇝ ℏ

i
∂
∂x prescription

used in (1.18)–(1.19) is not the most general one, nor is the assignment (1.24); instead:

p⇝ p̂ := ℏ
iDx : with Dx := ∂

∂x +P(x, t) ,
[
x , ℏ

iDx

]
= iℏ1; (1.32)

and also E ⇝Ĥ := iℏDt : with Dt :=
∂
∂t +E(x, t) ; no CCR to check. (1.33)

The newfangled “rate-of-change-operators,” Dx,Dt, are then required to themselves change, D∗ ! D′
∗,

and simultaneously with ψ ! eiφ ψ, so as to change the Schrödinger equation at most up to an overall
nonzero coefficient. This happens when

D′
∗ψ

′ = D′
∗(e

iφ ψ) != eiφ(D∗ψ), i.e. D′
∗ = eiφD∗e

−iφ, (1.34)

so P′(x, t) = P(x, t)− i
∂φ

∂x
, and E′(x, t) =E(x, t)− i

∂φ

∂t
. (1.35)

Comparing with standard texts on electromagnetism [13,14] lets us identify

E = iq
ℏ Φ, P = q

iℏAx, φ = q
ℏΛ, (1.36)

so that (1.35) reproduce (x-projection of) the standard, U(1) gauge transformation of the scalar and vector
potentials in electromagnetism

Φ ! Φ′ = Φ− ∂Λ

∂t
, A⃗! A⃗′ = A⃗+ ∇⃗Λ , ψ ! ψ′ = eiφψ . (1.37)

The so-modified Schrödinger equation reads (in 3-dimensions):

iℏ
[
Dt :=

∂

∂t
+
iq

ℏ
Φ
]
ψ(r⃗, t) =

{
− ℏ2

2m

[
D⃗ :=∇⃗+

q

iℏ
A⃗
]2

+ V (r⃗, t)

}
ψ(r⃗, t), (1.38)
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i.e., iℏ
∂

∂t
ψ(r⃗, t) =

[
− ℏ2

2m

[
∇⃗+

q

iℏ
A⃗
]
·
[
∇⃗+

q

iℏ
A⃗
]
+
(
V (r⃗, t) + qΦ

)]
ψ(r⃗, t), (1.39)

which couples to the newfangled “rate-of-change-computation corrections,” E = iq
ℏ Φ and P⃗ = q

iℏA⃗, the
electromagnetic potentials, precisely proportionally to the electric charge, q, of the object represented by
ψ(x, t). These newfangled, electromagnetic-field-sensing “rate-of-change operators” are

Dt :=
∂

∂t
+
iq

ℏ
Φ(r⃗, t) and D⃗ :=∇⃗+

q

iℏ
A⃗(r⃗, t) , called covariant derivatives. (1.40)

▶ Curvature: Since the potentials (1.36) do change in gauge transformations (1.37), they must not be ob-
servable themselves! (Indeed, one never measures the potential, only ever potential differences.)
Owing to the abelian (commutative, U(1)-group action, since φ ≃ φ+2π) nature of the gauge transforma-
tion (1.37), it is easy to see that

B⃗ := ∇⃗×A⃗ and E⃗ := −∇⃗Φ− ∂A⃗

∂t
(1.41)

remain unchanged by the gauge transformations (1.37), and so are observable (consistently measurable).

The same quantities are however also computed “canonically”:[
D⃗ , Dt

]
=

[
∇⃗ − i

q

ℏ
A⃗ ,

∂

∂t
+ i

q

ℏ
Φ
]
= i

q

ℏ

(
−∇⃗Φ− ∂A⃗

∂t
= E⃗

)
; (1.42)[

Dx , Dy

][ ∂

∂x
− i

q

ℏ
Ax ,

∂

∂y
− i

q

ℏ
Ay

]
= −i q

ℏ

(∂Ay
∂x

− ∂Ax
∂y

= (B⃗)z

)
. (1.43)

This is straightforward to generalize for non-abelian gauge symmetries [12, § 6.1]. The explicit com-
putation shows that the gauge-invariant E⃗, B⃗-fields of electromagnetism are components of curvature, the
Rij-part of the standard definition, [Di,Dj ] =: Tij

kDk +Rij , and explicitly verifies that covariant deriva-
tives (1.40) of electromagnetism have no (geometric) torsion, Tijk. Electromagnetism is thus induced by
QM, and could have been discovered by it, had it not been already well known for half a century:

Corollary 1.1: The only dynamical equation of QM, (1.25), forces the use of complex functions of
which the (overall) phase-factor is not observable; maintaining its unobservability introduces the gauge
interactions, i.e., curves the spacetime for so-charged objects.

▶ WKBJ: The computation (1.28)–(1.31) reveals an avenue of solving the Schrödinger equation differ-
ently: Setting ψ!1 in (1.30) effectively makes the nonlinear change of variables ψ(x, t) ! eiφ(x,t):

∂φ

∂t
=

ℏ
2m

(
i
∂2φ

∂x2
−
(∂φ
∂x

)2
)
− 1

ℏ
V (x, t), (1.44)

which may be solved iteratively in a few different schemes. One of those produces, after the first iteration,
the so-called Wentzel–Kramers–Brillouin–Jeffreys (a.k.a. “semi-classical”) approximation,

ψWKBJ(x, t) :=
C±√
p(x)

exp

{
i

∫
dt
(
±ẋ p(x)/ℏ−(E/ℏ)

)}
, p(x) =

√
2m

(
E−V (x)

)
=

√
2mKE , (1.45)

where the right-hand side is entirely classical, and E is constant. This is very much akin to the guess af-
ter (1.16)–(1.17) — except for the 1√

p(x)
-normalization, which causes the probability density, |ψWKBJ(x, t)|2,

to have poles at the (V (x)=E) “turning points,” the x-boundaries of the “classically permitted regions,”
where a classical particle slows about to turn back.
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