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I. The Philosophy of

Noncommutative Geometry

A basic notion in mathematics, going all the

way back to Descartes, is that we study a

space by means of functions on the space. In

fact, the algebra of functions “determines” the

space.

Examples of this principle:

• Algebraic Geometry: R a commutative ring,

Spec R a scheme.

• Gelfand-Naimark correspondence: X a lo-

cally compact Hausdorff space, C0(X) a

commutative C∗-algebra (a Banach alge-

bra that can be realized as a norm-closed ∗-

algebra of bounded operators on a Hilbert

space).
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Quantum mechanics, however, suggests that

some physical systems should be modeled by

“spaces” on which “functions” are not com-

mutative. C∗-algebras are natural models for

the function algebras, since they have a good

structure theory and since quantum mechanics

demands that observables be self-adjoint oper-

ators on some Hilbert space.

Example: a spinning electron, with two [pure]

states: “up” and “down.”

• Semiclassical model: space S0 of two points,

possibilities of transitions between them.

• Quantum model: space with “functions”

M2(C). Generators are matrix units eij
with relations eijekl = δjkeil.
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This is a special case of the C∗-algebra of a
(locally compact) groupoid. Other examples:

• An equivalence relation on a finite set. The
C∗-algebra is a finite-dimensional semisim-
ple algebra (over C). Example:

M2(C)⊕M2(C)⊕ C

• A locally compact group G. The C∗-algebra
is C∗(G), the universal object for unitary
representations of G.

• A locally compact group G acting on a lo-
cally compact space X. The C∗-algebra
C∗(G,X) = C0(X)o G is generated by for-
mal products fϕ, f ∈ C0(X), ϕ ∈ C∗(G),
multiplied using the rule that

ufu−1 = u·f, u·f(x) = f(u−1
·x), u ∈ G.
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Geometric examples:

• (Connes, Connes-Skandalis) A foliated man-

ifold (M,F). The C∗-algebra of the holon-

omy groupoid (roughly speaking, the equiv-

alence relation of being on the same leaf)

is denoted C∗(M,F). If F is a fibration

F → M → X,

C∗(M,F) is up to Morita equivalence just

C0(X), the functions on the quotient space

M/F. But if F is minimal (every leaf dense),

C∗(M,F) is a simple algebra (Fack-Skanda-

lis), even though it may have fairly compli-

cated structure and K-theory.

• (Farsi) An orbifold M . The associated C∗-

algebra is C(P )oO(n), P the principal frame

bundle, which is Morita equivalent to C0(M)

if M is actually a manifold.
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