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Structure of the Talk

1 Introduce the topolgical field theory
2 Examples of topological field
3 Mirror Symmetry

Topological twist 1/18



Topological Field Theory

There are two types of topological field theory:

1 The Schwarz type, where the action is independent of the
metric gµν , i.e. For the action S we have the stress-energy
tensor Tµν = δS

δgµν
= 0.

Example: BF model, Chern-Simons theory.
2 The Witten type theory, where the action can be dependent on

the metric, but we can modify so that the correlation function
are independent.
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Topological Twist: Interesting Facts

1 Witten introduced the procedure in his paper "Topological
Quantum Field Theory" in 1988.

2 Topological twists in N=(2,2) nonlinear sigma model leads to
the definition of Gromov-Witten invariant and the mirror
symmetry conjecture for it.

3 Topological twits in N=4 d=4 super Yang-Mills leads to the
famous Kapustin-Witten geometric Langlands formulation.
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Topological Twist: The procedure

Witten-type TQFTs arise if the following conditions are satisfied:

1 The action S of the TQFT has a symmetry, i.e. if Q denotes a
symmetry transformation (e.g. a Lie derivative) then QS = 0
holds.

2 The symmetry transformation is exact, i.e. Q2 = 0.
3 The observables O are satisfying the "closed" condition,

namely QO = 0.
4 The energy stress-energy tensor Tµν = δS

δgµν
= QGµν , i.e. it is

Q−exact.
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"Proof" that topological twisting is topological

We have for any correlation function, for a Haar measure µ and
correlation function ⟨Oi ⟩ =

∫
dµOie

iS

δ

δgµν
⟨Oi ⟩ =

∫
dµOi

δS

δgµν
e iS

=

∫
dµOi (QG

µν)e iS

= Q

∫
dµOiG

µνe iS

= 0

This is because QOi = 0 and QS = 0. Moreover the last integral is
a number and the lie derivative will be zero.
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Instant reaction from math

Q forms a kind of "derivative" and topological field will calculate
kind of "euler characteristic" for the Q-cohomology.

Indeed, the Euler characteristic of a Riemannian manifold can be
calculated by the 1-dimensional supersymmetric sigma-model. Thus
topological in some sense.
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Sigma Model

Let’s consider the 1-dimensional sigma model for a target space R.
so the action will be

S =

∫
1
2
Ẋ 2dt

,where X (t) is a function of t.

We can generalize to the manifold M with action

S =
1
2

∫
gij

dXi

dt

dXj

dt
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Supersymmetric Sigma Model

The supersymmetric (1, 1)-dimensional sigma model for a target
space R. so the action will be

S =

∫
1
2
ẋ2dt − 1

2
((h′(ẋ))2 +

i

2
(ψ̄ψ̇ − ˙̄ψψ)− h′′(x)ψ̄ψ

,where x(t), ψ(t) is a function of t. The derivatives comes a choice
of potential.

If h = 0 We can generalize to the manifold M with action

S =
1
2

∫
gij ϕ̇

i ϕ̇j +
i

2
gij(ψ̄

iDtψ
j − Dtψ̄

iψj)− 1
2
Rijklψ

i ψ̄jψk ψ̄l

Of course with potential term this will be more complicated.
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Supersymmetric Sigma Model

Euler characteristic
Let Q = igij ψ̄

i ϕ̇j ,Q = −igijψ
i ϕ̇j , and if we represents the

observables in the differential form by
ϕi = x i×
pi = −i∇i

ψ̄i = dx i∧
ψi = g ij i∂/∂x j

Then we can have the supercharges Q = iψ̄ipi = dx i ∧∇i = d ,
and Q = d†.

The Q-closed observables mod out by Q-exact are exactly the
cohomology of M. Moreover one can calculate that
⟨Tr(−1)F ⟩ = χ(M), where F is the number of differentials/
fermions.
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N = (2, 2) supersymmetry

Now we have x0 = t, x1 = s with Minkowski metric
η00 = −1, η11 = 1 and other things zero. We have 4 fermionic
coordinates θ+, θ−, θ̄+, θ̄−.

A Lorentz transformation acts on the bosonic and fermionic
coordinates as [

x0

x1

]
=

[
cosh(γ) sinh(γ)
sinh(γ) cosh(γ)

] [
x0

x1

]
θ± → e±γ/2θ±, θ̄± → e±γ/2θ±

And any field/function of these variables can be written as
F (x0, x1, θ+, θ−, . . .) = f0(x

0, f 1) + θ+f+(x
0, x1) + taylor series
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N = (2, 2) supersymmetry

We got 2 rotations named R-symmetry of the functions:
e iαFV : F (xµ, θ

±, θ̄±) → F (xµ, e
−iαθ±, e iαθ̄±)

e iαFA : F (xµ, θ
±, θ̄±) → F (xµ, e

∓iαθ±, e±iαθ̄±)

These transfomations are called vector and axial R-symmetry.
What they do is that if we set differential operators

Q± =
∂

∂θ±
+ i θ̄±∂±,

Q̄± = − ∂

∂θ̄±
+ iθ±∂±

With Axial transformation Q± → e∓iαQ±, Q̄± → e±iαQ̄±.
Simiparly we can write the vector transformation.
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N = (2, 2) Sigma Model

Now in this case we need to consider the morphisms f : Σ → M
where M is a Kahler metric. The fermions are sections of the spinor
bundle ψ± ∈ Γ(Σ, ϕ∗TM(1,0) ⊗ S±), ψ̄± ∈ Γ(Σ, ϕ∗TM(0,1) ⊗ S±)
and the familiar action
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Symmetry Broken

Though the twos are symmetris of the original action, the
symmetry will be broken in the quantum level for U(1)A.

Toy model: Let’s consider Σ = T 2 a Euclidean torus, ϕ = 0 and
we’re only left with ψ terms.

S =

∫
T 2

d2z(iψ̄+Dzψ+ + iψ̄−Dz̄ψ−)

ψ± ∈ Γ(T 2,E ⊗ S±) and ψ̄± ∈ Γ(T 2,E ∗ ⊗ S±).

The index theorem tell us

dim kerDz̄ − dim kerDz =

∫
T 2

c1(E ) = k.

In the quantum mechanics, it means we have exactly k Dz̄ -zero
modes and no Dz zero modes to get a nonvanishing correlation
function. So the function transforms as

⟨ψ−(z1) . . . ψ−(zk)ψ̄+(z1) . . . ψ̄+(zk)⟩
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Symmetry Broken, II

Vector rotation:

⟨ψ−(z1) . . . ψ−(zk)ψ̄+(z1) . . . ψ̄+(zk)⟩
→ ⟨e−iαψ−(z1) . . . e

−iαψ−(zk)e
iαψ̄+(z1) . . . e

iαψ̄+(zk)⟩

Axial rotation

⟨ψ−(z1) . . . ψ−(zk)ψ̄+(z1) . . . ψ̄+(zk)⟩
→ ⟨e iαψ−(z1) . . . e

iαψ−(zk)e
iαψ̄+(z1) . . . e

iαψ̄+(zk)⟩

So the axial rotation is broken at quantum level if k ̸= 0.
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Symmetry Broken, II

In general symmetry broken index is given by∫
Σ
c1(ϕ

∗T (1,0)M) = ⟨c1(M), ϕ∗[Σ]⟩

In general we have the following diagram:

Vector Axial
CY sigma model good good

sigma model with c1(M) ̸= 0 good bad
LG model with generic W bad good

LG model with quasi-homogeneous W good good
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Back to Witten’s topological field

If we have the Calabi-Yau target, then we may consider two ways of
Q’s to do our topological twist:

1 QA = Q̄+ + Q−,Q
†
A = Q+ + Q̄−

2 QB = Q̄+ + Q̄−,Q
†
B = Q+ + Q−

A-twist and do the localization, it will leads to the moduli space of
stable maps, i.e. the Gromov-Witten invariants.

The B-twist is still mysteries in math and I don’t quite understand
it.
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Back to Witten’s topological field

For the N=4 Yang-Mills theory, we have a family of twists by

Q = uQu + vQr

and we may construct a topological theory out of that. The idea is
that we will get Hitchin’s equation from the equation of motion, so
we are essentially studying the Hitchin moduli space.

The twitsted theory for Σ× C leads to mirror symmetry for
A-model on MH(C ,G ) and B-model on MH(C ,

L G ).
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