Math 405 Take-home exam

Spring, 2016 due: Tuesday, May 10 at 12:30pm Laskowski

Ground rules:

- This exam is open book, open notes; but you are expected to do this exam by yourself and without access to electronic sources (e.g., no internet searches, no Wolfram Alpha, etc.) This is on the Honor system.
- Solving a problem and writing it up are two separate enterprises! Once you solve a question, spend some time preparing a nice, cogent writeup of the argument. For problems with a computational component, all steps must be shown. You may want to write solutions to the six problems on different pages.
- Each of the six problems is worth 25 points.

1. Let Let $A=\left(\begin{array}{ccc}0 & 4 & 4 \\ 1 & 1 & 0 \\ -2 & 3 & 4\end{array}\right)$.
(a) Find a matrix B in Jordan normal form that is similar to A.
(b) Find an invertible matrix S such that $B=S^{-1} A S$.
2. Let $T: V \rightarrow V$ be a linear transformation with characteristic polynomial $h(x)=(x-2)^{2}(x-3)^{6}$ and minimal polynomial $m(x)=$ $(x-2)(x-3)^{3}$. List all possible sets of elementary divisors of T, and for each such set, give a matrix in Jordan canonical form having that set of elementary divisors.
3. Let V be a finite dimensional vector space over a field F, and let T : $V \rightarrow V$ be a linear transformation. Say that T maps bases to bases if, for every basis $\mathcal{B}=\left\{v_{1}, \ldots, v_{n}\right\}$ of V, the set $\left\{T\left(v_{1}\right), \ldots, T\left(v_{n}\right)\right\}$ is also a basis of V.
Prove that T is invertible if and only if T maps bases to bases.
4. Recall that a linear transformation $T: V \rightarrow V$ is idempotent if $T^{2}=T$.
(a) Prove that if $T: V \rightarrow V$ is idempotent, then $V=U \oplus W$, where $U=\{v \in V: T(v)=v\}$ and $W=\{v \in V: T(v)=0\}$.
(b) Find all linear transformations $T: V \rightarrow V$ that are both idempotent and invertible.
5. Let $f, g \in F[x]$ be relatively prime polynomials, let $T: V \rightarrow V$ be a linear transformation, and let $w \in V$ be a non-zero vector. Prove that if $f(T)(w)=0$, then $g(T)(w) \neq 0$.
6. Suppose V is an n-dimensional vector space, $T: V \rightarrow V$ is a linear transformation with characteristic polynomial

$$
h(x)=\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right) \ldots\left(x-\alpha_{n}\right)
$$

with $\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right\}$ distinct. Let $S: V \rightarrow V$ be any linear transformation that commutes with T, i.e., $S T=T S$. Prove that S is diagonalizable.

