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1. (10 points each) Let S be the subspace of R4 generated by the three vectors

{〈1, 2, 0, 2〉, 〈2, 0, 1, 1〉, 〈1,−2, 1,−1〉}

(a) Find a basis for S.

ANS: Row reduce, or note by inspection that the three vectors are linearly dependent
(second row=sum of first and third). So, e.g., any two of these vectors form a basis. [As
would any two non-zero vectors after row reducing.]

(b) Find an orthonormal basis for S with respect to the usual inner product on R4

(i.e., dot product).

ANS: Start with {v1, v2} = {〈1, 2, 0, 2〉, 〈2, 0, 1, 1〉}. Let u1 := v1
||v1|| = (1/3)〈1, 2, 0, 2〉.

Let w2 = v2 − proju1
v2 = (v2, u1)v2 = (1/9)〈14,−8, 9, 1〉 and let u2 = w2

||w2|| =

(1/27
√

38)〈14,−8, 9, 1〉.
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2. True/False (10 points each) For each statement, give a brief justification as to why
it is True or False.

a) A = {f : f(0) = 1} is a subspace of F(R), the vector space of all
functions f : R→ R.

FALSE – e.g., the zero function is not in A.

b) B = {f : f(1) = 0} is a subspace of F(R), the vector space of all
functions f : R→ R.

TRUE – If f, g ∈ B, then (f + g)(1) = f(1) + g(1) = 0, so (f + g) ∈ B. Also, if α ∈ R,
then (αf)(1) = αf(1) = 0. Thus, B is a subspace.

c) There is a set of 7 linearly independent vectors in M3(R), the
vector space of all 3× 3 matrices with coefficients in R.

TRUE – M3(R) has dimension 9, so e.g., any 7 elements of a basis will be linearly
independent.

d) The polynomial x2 is a linear combination of {2, 3x, x(x− 1)}
in P2(R), the vector space of polynomials of degree at most 2.

TRUE – P2(R) has dimension 3, and it is readily checked that the three functions are
linearly independent. Thus, every element of P2(R) is a linear combination of these three.

e) The solution set of 5x1+2x2−x4 = 3 is a 3-dimensional linear manifold
of R4.

TRUE – The corresponding homogeneous equation 5x1 + 2x2 − x4 = 0 describes a
subspace S of dimension 3. By superposition, the solution set of the given equation has the
form p+S, where p is any particular solution. This is what it means to be a 3-dimensional
linear manifold.
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3. (10 points each) Let P2(R) denote the vector space of polynomials of degree at most 2.
Let T : P2(R)→ P2(R) be defined by:

T (a0 + a1x+ a2x
2) = 3a2x+ a1

(a) Prove that T is a linear transformation.

ANS: Directly check that for every p, q ∈ P2(R), T (p + q) = T (p) + T (q) and that
T (αp) = αT (p) for α ∈ R.

(b) Find the matrix of T with respect to the standard basis B = {1, x, x2}.

ANS: T (1) = 0, T (x) = 1 and T (x2) = 3x. So ΦB is a 3× 3 matrix

ΦB =

 0 1 0
0 0 3
0 0 0



(c) Prove that C = {5, 2x− 1, x(x− 1)} is a basis for P2(R).

ANS: Say λ0, λ1, λ2 ∈ R such that λ0(5) + λ1(2x− 1) + λ2(x2 − x) is the zero vector,
i.e., the identically zero function. Then, by looking at the x2 terms, λ2 = 0. Once we have
this, then the x terms give λ1 = 0, and thus λ0 = 0 by the constant terms. So C is linearly
independent. As dim(P2(R)) = 3, C is a basis.

(d) Find the change of basis matrix MC
B that transforms C-coefficients of a vector to

B-coefficients of the same vector.

Since 5 = 5(1)+0x+0x2, 2x−1 = (−1)(1)+2x+0x2, and x(x−1) = 0(1)+(−1)x+1x2,

MC
B =

 5 −1 0
0 2 −1
0 0 1
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4. (20 points) Let T : V → V be a linear transformation and let T 2 denote the compo-
sition T ◦ T i.e., T 2(v) = T (T (v)). Prove that:

Null(T 2) = Null(T ) if and only if T (V ) ∩Null(T ) = {0}.

PROOF: First, assume Null(T 2) = Null(T ). Choose any vector w ∈ T (V )∩Null(T ).
Since w ∈ T (V ), choose u ∈ V such that T (u) = w. Since w ∈ Null(T ), T (T (u)) = T (w) =
0. That is, u ∈ Null(T 2). Since Null(T ) = Null(T 2), u ∈ Null(T ). Thus, w = T (u) = 0.
Thus, T (V ) ∩Null(T ) = {0}.

Conversely, assume T (V ) ∩ Null(T ) = {0}. We must show Null(T 2) = Null(T ).
One direction is obvious – For any linear transformation T , T (0) = 0. Thus, Null(T ) ⊆
Null(T 2) for any linear transformation T : V → V . For the other direction, choose
any u ∈ Null(T 2). Let w = T (u). Visibly, w ∈ T (V ). But also, since u ∈ Null(T 2),
T (w) = T (T (u)) = 0. That is, w ∈ Null(T ). By hypothesis, w = 0. That is, T (u) = 0, so
u ∈ Null(T ).
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5. (a) (10 points) Suppose that T : V →W is a linear transformation that is 1-1. Prove
that if {v1, . . . , vn} ⊆ V is linearly independent, then {T (v1), . . . , T (vn)} ⊆ W is
linearly independent as well.

PROOF: Choose any λ1 . . . , λn such that λ1T (v1) + . . . λnT (vn) = 0. As T is a linear
transformation,

T (λ1v1 + . . . λnvn) = λ1T (v1) + . . . λnT (vn) = 0

Since T is 1-1, this implies that λ1v1 + . . . λnvn = 0. But, since {v1, . . . , vn} are linearly
independent, it follows that λ1 = . . . = λn = 0. Thus, {T (v1), . . . , T (vn)} ⊆ W is linearly
independent.

(b) (10 points) Let V and W be two finite dimensional vector spaces over the same
field F . Prove that there is a 1-1 linear transformation T : V →W if and only if
dim(V ) ≤ dim(W ). [Hint: You may want to use (a) above.]

PROOF: First, assume there is a 1-1 linear transformation T : V → W . Let n =
dim(V ) and m = dim(W ). Let {v1, . . . , vn} be a basis for V . By (a), {T (v1), . . . , T (vn)}
is a linearly independent set of size n. As we know there cannot be a linearly independent
set in W of size more than dim(W ), it follows that n ≤ dim(W ).

Conversely, assume that dim(V ) ≤ dim(W ). Let {v1, . . . , vn} and {w1, . . . , wm} be
bases for V and W , respectively. Define a T : V → W to be the unique linear transfor-
mation satisfying T (vi) = wi for 1 ≤ i ≤ n. As Null(T ) = {0}, T is 1-1. [In fact, T is an
isomorphism between V and the subspace S(w1, . . . , wn) of W .]
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