Midterm Exam

Math 405
C. Laskowski

10 March, 2016

Name:

1. (10 points each) Let S be the subspace of \mathbb{R}^{4} generated by the three vectors

$$
\{\langle 1,2,0,2\rangle,\langle 2,0,1,1\rangle,\langle 1,-2,1,-1\rangle\}
$$

(a) Find a basis for S.

ANS: Row reduce, or note by inspection that the three vectors are linearly dependent (second row=sum of first and third). So, e.g., any two of these vectors form a basis. [As would any two non-zero vectors after row reducing.]
(b) Find an orthonormal basis for S with respect to the usual inner product on \mathbb{R}^{4} (i.e., dot product).

ANS: Start with $\left\{v_{1}, v_{2}\right\}=\{\langle 1,2,0,2\rangle,\langle 2,0,1,1\rangle\}$. Let $u_{1}:=\frac{v_{1}}{\left\|v_{1}\right\|}=(1 / 3)\langle 1,2,0,2\rangle$.
Let $w_{2}=v_{2}-\operatorname{proj}_{u_{1}} v_{2}=\left(v_{2}, u_{1}\right) v_{2}=(1 / 9)\langle 14,-8,9,1\rangle$ and let $u_{2}=\frac{w_{2}}{\left\|w_{2}\right\|}=$ $(1 / 27 \sqrt{38})\langle 14,-8,9,1\rangle$.
2. True/False (10 points each) For each statement, give a brief justification as to why it is True or False.
a) $A=\{f: f(0)=1\}$ is a subspace of $\mathcal{F}(\mathbb{R})$, the vector space of all functions $f: \mathbb{R} \rightarrow \mathbb{R}$.

FALSE - e.g., the zero function is not in A.
b) $B=\{f: f(1)=0\}$ is a subspace of $\mathcal{F}(\mathbb{R})$, the vector space of all functions $f: \mathbb{R} \rightarrow \mathbb{R}$.

TRUE - If $f, g \in B$, then $(f+g)(1)=f(1)+g(1)=0$, so $(f+g) \in B$. Also, if $\alpha \in \mathbb{R}$, then $(\alpha f)(1)=\alpha f(1)=0$. Thus, B is a subspace.
c) There is a set of 7 linearly independent vectors in $M_{3}(\mathbb{R})$, the vector space of all 3×3 matrices with coefficients in \mathbb{R}.

TRUE $-M_{3}(\mathbb{R})$ has dimension 9 , so e.g., any 7 elements of a basis will be linearly independent.
d) The polynomial x^{2} is a linear combination of $\{2,3 x, x(x-1)\}$ in $P_{2}(\mathbb{R})$, the vector space of polynomials of degree at most 2 .

TRUE $-P_{2}(\mathbb{R})$ has dimension 3 , and it is readily checked that the three functions are linearly independent. Thus, every element of $P_{2}(\mathbb{R})$ is a linear combination of these three.

The solution set of $5 x_{1}+2 x_{2}-x_{4}=3$ is a 3 -dimensional linear manifold of \mathbb{R}^{4}.

TRUE - The corresponding homogeneous equation $5 x_{1}+2 x_{2}-x_{4}=0$ describes a subspace S of dimension 3. By superposition, the solution set of the given equation has the form $p+S$, where p is any particular solution. This is what it means to be a 3 -dimensional linear manifold.
3. (10 points each) Let $P_{2}(\mathbb{R})$ denote the vector space of polynomials of degree at most 2 . Let $T: P_{2}(\mathbb{R}) \rightarrow P_{2}(\mathbb{R})$ be defined by:

$$
T\left(a_{0}+a_{1} x+a_{2} x^{2}\right)=3 a_{2} x+a_{1}
$$

(a) Prove that T is a linear transformation.

ANS: Directly check that for every $p, q \in P_{2}(\mathbb{R}), T(p+q)=T(p)+T(q)$ and that $T(\alpha p)=\alpha T(p)$ for $\alpha \in \mathbb{R}$.
(b) Find the matrix of T with respect to the standard basis $\mathcal{B}=\left\{1, x, x^{2}\right\}$.

ANS: $T(1)=0, T(x)=1$ and $T\left(x^{2}\right)=3 x$. So $\Phi_{\mathcal{B}}$ is a 3×3 matrix

$$
\Phi_{\mathcal{B}}=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 3 \\
0 & 0 & 0
\end{array}\right)
$$

(c) Prove that $\mathcal{C}=\{5,2 x-1, x(x-1)\}$ is a basis for $P_{2}(\mathbb{R})$.

ANS: Say $\lambda_{0}, \lambda_{1}, \lambda_{2} \in \mathbb{R}$ such that $\lambda_{0}(5)+\lambda_{1}(2 x-1)+\lambda_{2}\left(x^{2}-x\right)$ is the zero vector, i.e., the identically zero function. Then, by looking at the x^{2} terms, $\lambda_{2}=0$. Once we have this, then the x terms give $\lambda_{1}=0$, and thus $\lambda_{0}=0$ by the constant terms. So \mathcal{C} is linearly independent. As $\operatorname{dim}\left(P_{2}(\mathbb{R})\right)=3, \mathcal{C}$ is a basis.
(d) Find the change of basis matrix $M_{\mathcal{B}}^{\mathcal{C}}$ that transforms \mathcal{C}-coefficients of a vector to \mathcal{B}-coefficients of the same vector.

Since $5=5(1)+0 x+0 x^{2}, 2 x-1=(-1)(1)+2 x+0 x^{2}$, and $x(x-1)=0(1)+(-1) x+1 x^{2}$,

$$
M_{\mathcal{B}}^{\mathcal{C}}=\left(\begin{array}{ccc}
5 & -1 & 0 \\
0 & 2 & -1 \\
0 & 0 & 1
\end{array}\right)
$$

4. (20 points) Let $T: V \rightarrow V$ be a linear transformation and let T^{2} denote the composition $T \circ T$ i.e., $T^{2}(v)=T(T(v))$. Prove that:

$$
\operatorname{Null}\left(T^{2}\right)=\operatorname{Null}(T) \quad \text { if and only if } \quad T(V) \cap \operatorname{Null}(T)=\{0\}
$$

PROOF: First, assume $\operatorname{Null}\left(T^{2}\right)=\operatorname{Null}(T)$. Choose any vector $w \in T(V) \cap N u l l(T)$. Since $w \in T(V)$, choose $u \in V$ such that $T(u)=w$. Since $w \in \operatorname{Null}(T), T(T(u))=T(w)=$ 0. That is, $u \in \operatorname{Null}\left(T^{2}\right)$. Since $\operatorname{Null}(T)=\operatorname{Null}\left(T^{2}\right), u \in \operatorname{Null}(T)$. Thus, $w=T(u)=0$. Thus, $T(V) \cap \operatorname{Null}(T)=\{0\}$.

Conversely, assume $T(V) \cap \operatorname{Null}(T)=\{0\}$. We must show $\operatorname{Null}\left(T^{2}\right)=\operatorname{Null}(T)$. One direction is obvious - For any linear transformation $T, T(0)=0$. Thus, $N u l l(T) \subseteq$ $\operatorname{Null}\left(T^{2}\right)$ for any linear transformation $T: V \rightarrow V$. For the other direction, choose any $u \in \operatorname{Null}\left(T^{2}\right)$. Let $w=T(u)$. Visibly, $w \in T(V)$. But also, since $u \in \operatorname{Null}\left(T^{2}\right)$, $T(w)=T(T(u))=0$. That is, $w \in N u l l(T)$. By hypothesis, $w=0$. That is, $T(u)=0$, so $u \in \operatorname{Null}(T)$.
5. (a) (10 points) Suppose that $T: V \rightarrow W$ is a linear transformation that is 1-1. Prove that if $\left\{v_{1}, \ldots, v_{n}\right\} \subseteq V$ is linearly independent, then $\left\{T\left(v_{1}\right), \ldots, T\left(v_{n}\right)\right\} \subseteq W$ is linearly independent as well.

PROOF: Choose any $\lambda_{1} \ldots, \lambda_{n}$ such that $\lambda_{1} T\left(v_{1}\right)+\ldots \lambda_{n} T\left(v_{n}\right)=0$. As T is a linear transformation,

$$
T\left(\lambda_{1} v_{1}+\ldots \lambda_{n} v_{n}\right)=\lambda_{1} T\left(v_{1}\right)+\ldots \lambda_{n} T\left(v_{n}\right)=0
$$

Since T is $1-1$, this implies that $\lambda_{1} v_{1}+\ldots \lambda_{n} v_{n}=0$. But, since $\left\{v_{1}, \ldots, v_{n}\right\}$ are linearly independent, it follows that $\lambda_{1}=\ldots=\lambda_{n}=0$. Thus, $\left\{T\left(v_{1}\right), \ldots, T\left(v_{n}\right)\right\} \subseteq W$ is linearly independent.
(b) (10 points) Let V and W be two finite dimensional vector spaces over the same field F. Prove that there is a 1-1 linear transformation $T: V \rightarrow W$ if and only if $\operatorname{dim}(V) \leq \operatorname{dim}(W)$. [Hint: You may want to use (a) above.]

PROOF: First, assume there is a 1-1 linear transformation $T: V \rightarrow W$. Let $n=$ $\operatorname{dim}(V)$ and $m=\operatorname{dim}(W)$. Let $\left\{v_{1}, \ldots, v_{n}\right\}$ be a basis for V. By (a), $\left\{T\left(v_{1}\right), \ldots, T\left(v_{n}\right)\right\}$ is a linearly independent set of size n. As we know there cannot be a linearly independent set in W of size more than $\operatorname{dim}(W)$, it follows that $n \leq \operatorname{dim}(W)$.

Conversely, assume that $\operatorname{dim}(V) \leq \operatorname{dim}(W)$. Let $\left\{v_{1}, \ldots, v_{n}\right\}$ and $\left\{w_{1}, \ldots, w_{m}\right\}$ be bases for V and W, respectively. Define a $T: V \rightarrow W$ to be the unique linear transformation satisfying $T\left(v_{i}\right)=w_{i}$ for $1 \leq i \leq n$. As $\operatorname{Null}(T)=\{0\}, T$ is 1-1. [In fact, T is an isomorphism between V and the subspace $S\left(w_{1}, \ldots, w_{n}\right)$ of W.]

