Math 446

- 1. Prove parts (a), (d), (f) of Proposition 1.15 of the text.
- 2. Suppose that (X, \leq) is a linear order. Prove that $(FIN(X), \leq_{lex})$ is a linear order.
- 3. Suppose that (X, \leq) is a linear order. For every $n \in \mathbb{N}$, let $L_n(X)$ be the subset of FIN(X) consisting of all sequences from X of length at most n.
 - a. Let \leq denote the usual ordering on \mathbb{N} . True or false: $L_1(\mathbb{N})$ is a cofinal subset of $(FIN(\mathbb{N}), \leq_{lex})$. Prove your answer is correct.
 - b. Prove, by induction on n, that if (X, \leq) is a well order, then so is $(L_n(X), \leq_{lex})$.
 - c. Let \leq denote the usual ordering on \mathbb{N} . True or false: $(FIN(\mathbb{N}), \leq_{lex})$ is a wellorder. Prove your answer is correct.
 - d. Let \leq denote the usual ordering on \mathbb{N} . Find a subordering of (\mathbb{Q}, \leq) that is isomorphic to $L_3(\mathbb{N})$.
- 4. Find a subordering of (\mathbb{Q}, \leq) that is a well ordering with exactly 5 limit points.