Math 446

- 1. Prove parts (a), (d), (f) of Proposition 1.15 of the text.
- 2. Suppose that (X, \leq) is a linear order. Prove that $(FIN(X), \leq_{lex})$ is a linear order.

Definition: Two linear orders (X, \leq_X) and (Y, \leq_Y) are *isomorphic* if there is a 1-1, onto $f: X \to Y$ that is *order-preserving* i.e., for $a, b, \in X$,

 $a \leq_X b$ if and only if $f(a) \leq_Y f(b)$

- 3. Suppose that (X, \leq) is a linear order. For every $n \in \mathbb{N}$, let $L_n(X)$ be the subset of FIN(X) consisting of all sequences from X of length at most n.
 - a) Let \leq denote the usual ordering on \mathbb{N} . Find a subordering of (\mathbb{Q}, \leq) that is isomorphic to $L_1(\mathbb{N})$.
 - b) Let \leq denote the usual ordering on \mathbb{N} . Find a subordering of (\mathbb{Q}, \leq) that is isomorphic to $L_3(\mathbb{N})$.
 - c) Prove, by induction on n, that if (X, \leq) is any well order, then so is $(L_n(X), \leq_{lex})$.
 - d) Let \leq denote the usual ordering on \mathbb{N} . True or false: $(FIN(\mathbb{N}), \leq_{lex})$ is a well-order. Prove your answer is correct.
- 4. Find a subordering of (\mathbb{Q}, \leq) that is a well ordering with exactly 5 limit points.