Most(?) theories have Borel complete reducts

Michael C. Laskowski and Douglas S. Ulrich * Department of Mathematics University of Maryland

September 20, 2021

Abstract

We prove that many seemingly simple theories have Borel complete reducts. Specifically, if a countable theory has uncountably many complete 1-types, then it has a Borel complete reduct. Similarly, if Th(M) is not small, then M^{eq} has a Borel complete reduct, and if a theory T is not ω -stable, then the elementary diagram of some countable model of T has a Borel complete reduct.

1 Introduction

In their seminal paper [1], Friedman and Stanley define and develop a notion of *Borel* reducibility among classes of structures with universe ω in a fixed, countable language Lthat are Borel and invariant under permutations of ω . It is well known (see e.g., [3] or [2]) that such classes are of the form $Mod(\Phi)$, the set of models of Φ whose universe is precisely ω for some sentence $\Phi \in L_{\omega_1,\omega}$, but here we concentrate on first-order, countable theories T. For countable theories T, S in possibly different language, a *Borel reduction* is a Borel function $f : Mod(T) \to Mod(S)$ that satisfies $M \cong N$ if and only if $f(M) \cong$ f(N). One says that T is *Borel reducible* to S if there is a Borel reduction $f : Mod(T) \to$ Mod(S). As Borel reducibility is transitive, this induces a quasi-order on the class of all countable theories, where we say T and S are *Borel equivalent* if there are Borel reductions in both directions. In [1], Friedman and Stanley show that among Borel invariant classes (hence among countable first-order theories) there is a maximal class with respect to \leq_B .

^{*}Both authors partially supported by NSF grant DMS-1855789.

We say Φ is *Borel complete* if it is in this maximal class. Examples include the theories of graphs, linear orders, groups, and fields.

The intuition is that Borel complexity of a theory T is related to the complexity of invariants that describe the isomorphism types of countable models of T. Given an L-structure M, one naturally thinks of the reducts M_0 of M to be 'simpler objects' hence the invariants for a reduct 'should' be no more complicated than for the original M, but we will see that this intuition is incorrect. As a paradigm, let T be the theory of 'independent unary predicates' i.e., $T = Th(2^{\omega}, U_n)$, where each U_n is a unary predicate interpreted as $U_n = \{\eta \in 2^{\omega} : \eta(n) = 1\}$. The countable models of T are rather easy to describe. The isomorphism type of a model is specified by which countable, dense subset of 'branches' is realized, and how many elements realize each of those branches. However, with Theorem 3.2, we will see that T has a Borel complete reduct.

To be precise about reducts, we have the following definition.

Definition 1.1. Given an *L*-structure *M*, a reduct *M'* of *M* is an *L'*-structure with the same universe as *M*, and for which the interpretation every atomic *L'*-formula $\alpha(x_1, \ldots, x_k)$ is an *L*-definable subset of M^k (without parameters). An *L'*-theory *T'* is a reduct of an *L*-theory *T* if T' = Th(M') for some reduct *M'* of some model *M* of *T*.

In the above definition, it would be equivalent to require that the interpretation in M' of every L'-formula $\theta(x_1, \ldots, x_k)$ is a 0-definable subset of M^k .

2 An engine for Borel completeness results

This section is devoted to proving Borel completeness for a specific family of theories. All of the theories T_h , are in the same language $L = \{E_n : n \in \omega\}$ and are indexed by strictly increasing functions $h : \omega \to \omega \setminus \{0\}$. For a specific choice of h, the theory T_h asserts that

- Each E_n is an equivalence relation with exactly h(n) classes; and
- The E_n 's cross-cut, i.e., for all nonempty, finite $F \subseteq \omega$, $E_F(x, y) := \bigwedge_{n \in F} E_n(x, y)$ is an equivalence relation with precisely $\prod_{n \in F} h(n)$ classes.

It is well known that each of these theories T_h is complete and admits elimination of quantifiers. Thus, in any model of T_h , there is a unique 1-type. However, the strong type structure is complicated.¹ So much so, that the whole of this section is devoted to the proof of:

¹Recall that in any structure M, two elements a, b have the same *strong type*, stp(a) = stp(b), if $M \models E(a, b)$ for every 0-definable equivalence relation. Because of the quantifier elimination, in any model $M \models T_h$, stp(a) = stp(b) if and only if $M \models E_n(a, b)$ for every $n \in \omega$.

Theorem 2.1. For any strictly increasing $h : \omega \to \omega \setminus \{0\}$, T_h is Borel complete.

Proof. Fix a strictly increasing function $h : \omega \to \omega \setminus \{0\}$. We begin by describing representatives \mathcal{B} of the strong types and a group G that acts faithfully and transitively on \mathcal{B} . As notation, for each n, let [h(n)] denote the h(n)-element set $\{1, \ldots, h(n)\}$ and let Sym([h(n]) be the (finite) group of permutations of [h(n)]. Let

$$\mathcal{B} = \{ f : \omega \to \omega : f(n) \in [h(n)] \text{ for all } n \in \omega \}$$

and let $G = \prod_{n \in \omega} Sym([h(n)])$ be the direct product. As notation, for each $n \in \omega$, let $\pi_n : G \to Sym([h(n)])$ be the natural projection map. Note that G acts coordinate-wise on \mathcal{B} by: For $g \in G$ and $f \in \mathcal{B}$, $g \cdot f$ is the element of \mathcal{B} satisfying $g \cdot f(n) = \pi_n(g)(f(n))$.

Define an equivalence relation \sim on \mathcal{B} by:

$$f \sim f'$$
 if and only if $\{n \in \omega : f(n) \neq f'(n)\}$ is finite.

For $f \in \mathcal{B}$, let [f] denote the \sim -class of f and, abusing notation somewhat, for $W \subseteq \mathcal{B}$

$$[W] := \bigcup \{ [f] : f \in W \}.$$

Observe that for every $g \in G$, the permutation of \mathcal{B} induced by the action of g maps \sim -classes onto \sim -classes, i.e., G also acts transitively on \mathcal{B}/\sim .

We first identify a countable family of \sim -classes that are 'sufficiently indiscernible'. Our first lemma is where we use the fact that the function h defining T_h is strictly increasing.

Lemma 2.2. There is a countable set $Y = \{f_i : i \in \omega\} \subseteq \mathcal{B}$ such that whenever $i \neq j$, $\{n \in \omega : f_i(n) = f_j(n)\}$ is finite.

Proof. We recursively construct Y in ω steps. Suppose $\{f_i : i < k\}$ have been chosen. Choose an integer N large enough so that h(N) > k (hence h(n) > k for all $n \ge N$). Now, construct $f_k \in \mathcal{B}$ to satisfy $f_k(n) \ne f_i(n)$ for all $n \ge N$ and all i < k.

Fix an enumeration $\langle f_i : i \in \omega \rangle$ of Y for the whole of the argument. The 'indiscernibility' of Y alluded to above is formalized by the following definition and lemma.

Definition 2.3. Given a permutation $\sigma \in Sym(\omega)$, a group element $g \in G$ respects σ if $g \cdot [f_i] = [f_{\sigma(i)}]$ for every $i \in \omega$.

Lemma 2.4. For every permutation $\sigma \in Sym(\omega)$, there is some $g \in G$ respecting σ .

Proof. Note that since h is increasing, $h(n) \ge n$ for every $n \in \omega$. Fix a permutation $\sigma \in Sym(\omega)$ and we will define some $g \in G$ respecting σ coordinate-wise. Using Lemma 2.2, choose a sequence

$$0 = N_0 \ll N_1 \ll N_2 \ll \dots$$

of integers such that for all $i \in \omega$, both $f_i(n) \neq f_j(n)$ and $f_{\sigma(i)}(n) \neq f_{\sigma(j)}(n)$ hold for all $n \geq N_i$ and all j < i.

Since $\{N_i\}$ are increasing, it follows that for each $i \in \omega$ and all $n \geq N_i$, the subsets $\{f_j(n) : j \leq i\}$ and $\{f_{\sigma(j)}(n) : j \leq i\}$ of [h(n)] each have precisely (i + 1) elements. Thus, for each $i < \omega$ and for each $n \geq N_i$, there is a permutation $\delta_n \in Sym([h(n)])$ satisfying

$$\bigwedge_{j \le i} \delta_n(f_j(n)) = f_{\sigma(j)}(n)$$

[Simply begin defining δ_n to meet these constraints, and then complete δ_n to a permutation of [h(n)] arbitrarily.] Using this, define $g := \langle \delta_n : n \in \omega \rangle$, where each $\delta_n \in Sym([h(n)])$ is constructed as above. To see that g respects σ , note that for every $i \in \omega$, $(g \cdot f_i)(n) = f_{\sigma(i)}(n)$ for all $n \geq N_i$, so $(g \cdot f_i) \sim f_{\sigma(i)}$.

Definition 2.5. For distinct integers $i \neq j$, let $d_{i,j} \in \mathcal{B}$ be defined by:

$$d_{i,j}(n) := \begin{cases} f_i(n) & \text{if } n \text{ even;} \\ f_j(n) & \text{if } n \text{ odd.} \end{cases}$$

Let $Z := \{ d_{i,j} : i \neq j \}.$

Note that $d_{i,j} \not\sim f_k$ for all distinct i, j and all $k \in \omega$, hence $\{[f_i] : i \in \omega\}$ and $\{[d_{i,j}] : i \neq j\}$ are disjoint.

Lemma 2.6. For all $\sigma \in Sym(\omega)$, if $g \in G$ respects σ , then $g \cdot [d_{i,j}] = [d_{\sigma(i),\sigma(j)}]$ for all $i \neq j$.

Proof. Choose $\sigma \in Sym(\omega)$, g respecting σ , and $i \neq j$. Choose N such that $(g \cdot [f_i])(n) = [f_{\sigma(i)}](n)$ and $(g \cdot [f_j])(n) = [f_{\sigma(j)}](n)$ for every $n \geq N$. Since $d_{i,j}(n) = f_i(n)$ for $n \geq N$ even,

$$(g \cdot d_{i,j})(n) = \pi_n(g)(d_{i,j}(n)) = \pi_n(g)(f_i(n)) = (g \cdot f_i)(n) = f_{\sigma(i)}(n)$$

Dually, $(g \cdot d_{i,j})(n) = f_{\sigma(j)}(n)$ when $n \ge N$ is odd, so $(g \cdot d_{i,j}) \sim d_{\sigma(i),\sigma(j)}$.

With the combinatorial preliminaries out of the way, we now prove that T_h is Borel complete. We form a highly homogeneous model $M^* \models T_h$ and thereafter, all models we consider will be countable, elementary substructures of M^* . Let $A = \{a_f : f \in \mathcal{B}\}$ and $B = \{b_f : f \in \mathcal{B}\}$ be disjoint sets and let M^* be the *L*-structure with universe $A \cup B$ and each E_n interpreted by the rules:

- For all $f \in \mathcal{B}$ and $n \in \omega$, $E_n(a_f, b_f)$; and
- For all $f, f' \in \mathcal{B}$ and $n \in \omega$, $E_n(a_f, a_{f'})$ iff f(n) = f'(n).

with the other instances of E_n following by symmetry and transitivity. For any finite $F \subseteq \omega$, $\{f \upharpoonright_F : f \in \mathcal{B}\}$ has exactly $\prod_{n \in F} h(n)$ elements, hence $E_F(x, y) := \bigwedge_{n \in F} E_n(x, y)$ has $\prod_{n \in F} h(n)$ classes in M^* . Thus, the $\{E_n : n \in \omega\}$ cross cut and $M^* \models T_h$.

Let $E_{\infty}(x, y)$ denote the (type definable) equivalence relation $\bigwedge_{n \in \omega} E_n(x, y)$. Then, in M^* , E_{∞} partitions M^* into 2-element classes $\{a_f, b_f\}$, indexed by $f \in \mathcal{B}$. Note also that every $g \in G$ induces an L-automorphism $g^* \in Aut(M^*)$ by

$$g^*(x) := \begin{cases} a_{(g \cdot f)} & \text{if } x = a_f \text{ for some } f \in \mathcal{B} \\ b_{(g \cdot f)} & \text{if } x = b_f \text{ for some } f \in \mathcal{B} \end{cases}$$

Recall the set $Y = \{f_i : i \in \mathcal{B}\}$ from Lemma 2.2, so $[Y] = \{[f_i] : i \in \omega\}$. Let $M_0 \subseteq M^*$ be the substructure with universe $\{a_f : f \in [Y]\}$. As T_h admits elimination of quantifiers and as [Y] is dense in \mathcal{B} , $M_0 \preceq M^*$. Moreover, every substructure M of M^* with universe containing M_0 will also be an elementary substructure of M^* , hence a model of T_h .

To show that $Mod(T_h)$ is Borel complete, we define a Borel mapping from {irreflexive graphs $\mathcal{G} = (\omega, R)$ } to $Mod(T_h)$ as follows: Given \mathcal{G} , let $Z(R) := \{d_{i,j} \in Z : \mathcal{G} \models R(i,j)\}$, so $[Z(R)] = \bigcup \{[d_{i,j}] : d_{i,j} \in Z(R)\}$. Let $M_G \preceq M^*$ be the substructure with universe

$$M_0 \cup \{a_d, b_d : d \in [Z(R)]\}$$

That the map $\mathcal{G} \mapsto M_G$ is Borel is routine, given that Y and Z are fixed throughout.

Note that in M_G , every E_{∞} -class has has either one or two elements. Specifically, for each $d \in [Z(R)]$, the E_{∞} -class $[a_d]_{\infty} = \{a_d, b_d\}$, while the E_{∞} -class $[a_f]_{\infty} = \{a_f\}$ for every $f \in [Y]$.

We must show that for any two graphs $\mathcal{G} = (\omega, R)$ and $\mathcal{H} = (\omega, S)$, \mathcal{G} and \mathcal{H} are isomorphic if and only if the *L*-structures M_G and M_H are isomorphic.

To verify this, first choose a graph isomorphism $\sigma : (\omega, R) \to (\omega, S)$. Then $\sigma \in Sym(\omega)$ and, for distinct integers $i \neq j$, $d_{i,j} \in Z(R)$ if and only if $d_{\sigma(i),\sigma(j)} \in Z(S)$. Apply Lemma 2.4 to get $g \in G$ respecting σ and let $g^* \in Aut(M^*)$ be the *L*-automorphism induced by g. By Lemma 2.6 and Definition 2.3, it is easily checked that the restriction of g^* to M_G is an L-isomorphism between M_G and M_H .

Conversely, assume that $\Psi : M_G \to M_H$ is an *L*-isomorphism. Clearly, Ψ maps E_{∞} -classes in M_G to E_{∞} -classes in M_H . In particular, Ψ permutes the 1-element E_{∞} -classes $\{\{a_f\} : f \in [Y]\}$ of both M_G and M_H , and maps the 2-element E_{∞} -classes $\{\{a_d, b_d\} : d \in [Z(R)]\}$ of M_G onto the 2-element E_{∞} -classes $\{\{a_d, b_d\} : d \in [Z(S)]\}$ of M_H . That is, Ψ induces a bijection $F : [Y \sqcup Z(R)] \to [Y \sqcup Z(S)]$ that permutes [Y].

As well, by the interpretations of the E_n 's, for $f, f' \in [Y \sqcup Z(R)]$ and $n \in \omega$,

$$f(n) = f'(n)$$
 if and only if $F(f)(n) = F(f')(n)$.

From this it follows that F maps \sim -classes onto \sim -classes. As F permutes [Y] and as $[Y] = \bigcup\{[f_i] : i \in \omega\}, F$ induces a permutation $\sigma \in Sym(\omega)$ given by $\sigma(i)$ is the unique $i^* \in \omega$ such that $F([f_i]) = [f_{i^*}]$.

We claim that this σ induces a graph isomorphism between $\mathcal{G} = (\omega, R)$ and $\mathcal{H} = (\omega, S)$. Indeed, choose any $(i, j) \in R$. Thus, $d_{i,j} \in Z(R)$. As F is \sim -preserving, choose N large enough so that $F(f_i)(n) = F(f_{\sigma(i)})(n)$ and $F(f_j)(n) = F(f_{\sigma(j)})(n)$ for every $n \geq N$. By definition of $d_{i,j}, d_{i,j}(n) = f_i(n)$ for $n \geq N$ even, so $F(d_{i,j})(n) = F(f_i)(n) = f_{\sigma(i)}(n)$ for such n. Dually, for $n \geq N$ odd, $F(d_{i,j})(n) = F(f_j)(n) = f_{\sigma(j)}(n)$. Hence, $F(d_{i,j}) \sim d_{\sigma(i),\sigma(j)} \in [Z(S)]$. Thus, $(\sigma(i), \sigma(j)) \in S$. The converse direction is symmetric (i.e., use Ψ^{-1} in place of Ψ and run the same argument).

Remark 2.7. If we relax the assumption that $h : \omega \to \omega \setminus \{0\}$ is strictly increasing, there are two cases. If h is unbounded, then the proof given above can easily be modified to show that the associated T_h is also Borel complete. Conversely, with Theorem 6.2 of [6] the authors prove that if $h : \omega \to \omega \setminus \{0\}$ is bounded, then T_h is not Borel complete. The salient distinction between the two cases is that when h is bounded, the associated group G has bounded exponent. However, even in the bounded case T_h has a Borel complete reduct by Lemma 3.1 below.

3 Applications to reducts

We begin with one easy lemma that, when considering reducts, obviates the need for the number of classes to be strictly increasing.

Lemma 3.1. Let $L = \{E_n : n \in \omega\}$ and let $f : \omega \to \omega \setminus \{0, 1\}$ be any function. Then every model M of T_f , the complete theory asserting that each E_n is an equivalence relation with f(n) classes, and that the $\{E_n\}$ cross-cut, has a Borel complete reduct.

Proof. Given any function $f : \omega \to \omega \setminus \{0, 1\}$, choose a partition $\omega = \bigsqcup \{F_n : n \in \omega\}$ into non-empty finite sets for which $\prod_{k \in F_n} f(k) < \prod_{k \in F_n} f(k)$ whenever $n < m < \omega$. For each n, let $h(n) := \prod_{k \in F_n} f(k)$ and let $E_n^*(x, y) := \bigwedge_{k \in F_n} E_k(x, y)$. Then, as h is strictly increasing and $\{E_n^*\}$ is a cross-cutting set of equivalence relations with each E_n^* having h(n) classes.

Now let $M \models T_f$ be arbitrary and let $L' = \{E_n^* : n \in \omega\}$. As each E_n^* described above is 0-definable in M, there is an L'-reduct M' of M. It follows from Theorem 2.1 that T' = Th(M') is Borel complete, so T_f has a Borel complete reduct.

Theorem 3.2. Suppose T is a complete theory in a countable language with uncountably many 1-types. Then every model M of T has a Borel complete reduct.

Proof. Let $M \models T$ be arbitrary. As usual, by the Cantor-Bendixon analysis of the compact, Hausdorff Stone space $S_1(T)$ of complete 1-types, choose a set $\{\varphi_\eta(x) : \eta \in 2^{<\omega}\}$ of 0-definable formulas, indexed by the tree $(2^{<\omega}, \trianglelefteq)$ ordered by initial segment, satisfying:

1.
$$M \models \exists x \varphi_{\eta}(x)$$
 for each $\eta \in 2^{<\omega}$;

- 2. For $\nu \leq \eta$, $M \models \forall x (\varphi_{\eta}(x) \rightarrow \varphi_{\nu}(x));$
- 3. For each $n \in \omega$, $\{\varphi_{\eta}(x) : \eta \in 2^n\}$ are pairwise contradictory.

By increasing these formulas slightly, we can additionally require

4. For each $n \in \omega$, $M \models \forall x (\bigvee_{n \in 2^n} \varphi_n(x))$.

Given such a tree of formulas, for each $n \in \omega$, define

$$\delta^0_n(x) := \bigwedge_{\eta \in 2^n} [\varphi_\eta(x) \to \varphi_{\eta \,{}^\circ 0}(x)] \quad \text{and} \quad \delta^1_n(x) := \bigwedge_{\eta \in 2^n} [\varphi_\eta(x) \to \varphi_{\eta \,{}^\circ 1}(x)]$$

Because of (4) above, $M \models \forall x (\delta_n^0(x) \lor \delta_n^1(x))$ for each n. Also, for each n, let

$$E_n(x,y) := [\delta_n^0(x) \leftrightarrow \delta_n^0(y)]$$

From the above, each E_n is a 0-definable equivalence relation with precisely two classes. Claim. The equivalence relations $\{E_n : n \in \omega\}$ are cross-cutting.

Proof. It suffices to prove that for every m > 0, the equivalence relation $E_m^*(x, y) := \bigwedge_{n < m} E_n(x, y)$ has 2^m classes. So fix m and choose a subset $A_m = \{a_\eta : \eta \in 2^m\} \subseteq M$ forming a set of representatives for the formulas $\{\varphi_\eta(x) : \eta \in 2^m\}$. It suffices to show that $M \models \neg E_m^*(a_\eta, a_\nu)$ whenever $\eta \neq \nu$ are from 2^m . But this is clear. Fix distinct $\eta \neq \nu$ and choose any k < m such that $\eta(k) \neq \nu(k)$. Then $M \models \neg E_k(a_\eta, a_\nu)$, hence $M \models \neg E_m^*(a_\eta, a_\nu)$.

Thus, taking the 0-definable relations $\{E_n\}$, M has a reduct that is a model of T_f (where f is the constant function 2). As reducts of reducts are reducts, it follows from Lemma 3.1 and Theorem 2.1 that M has a Borel complete reduct.

We highlight how unexpected Theorem 3.2 is with two examples. First, the theory of 'Independent unary predicates' mentioned in the Introduction has a Borel complete reduct.

Next, we explore the assumption that a countable, complete theory T is not small, i.e., for some k there are uncountably many k-types. We conjecture that some model of T has a Borel complete reduct. If k = 1, then by Theorem 3.2, every model of T has a Borel complete reduct. If k > 1 is least, then it is easily seen that there is some complete (k - 1) type $p(x_1, \ldots, x_{k-1})$ with uncountably many complete $q(x_1, \ldots, x_k)$ extending p. Thus, if M is any model of T realizing p, say by $\bar{a} = (a_1, \ldots, a_{k-1})$, the expansion $(M, a_1, \ldots, a_{k-1})$ has a Borel complete reduct, also by Theorem 3.2. Similarly, we have the following result.

Corollary 3.3. Suppose T is a complete theory in a countable language that is not small. Then for any model M of T, M^{eq} has a Borel complete reduct.

Proof. Let M be any model of T and choose k least such that T has uncountably many complete k-types consistent with it. In the language L^{eq} , there is a sort U_k and a definable bijection $f: M^k \to U_k$. Hence $Th(M^{eq})$ has uncountably many 1-types consistent with it, each extending U_k . Thus, M^{eq} has a Borel complete reduct by Theorem 3.2.

Finally, recall that a countable, complete theory is not ω -stable if, for some countable model M of T, the Stone space $S_1(M)$ is uncountable. From this, we immediately obtain our final corollary.

Corollary 3.4. If a countable, complete T is not ω -stable, then for some countable model M of T, the elementary diagram of M in the language $L(M) = L \cup \{c_m : m \in M\}$ has a Borel complete reduct.

Proof. Choose a countable M so that $S_1(M)$ is uncountable. Then, in the language L(M), the theory of the expanded structure M_M in the language L(M) has uncountably many 1-types, hence it has a Borel complete reduct by Theorem 3.2.

The results above are by no means characterizations. Indeed, there are many Borel complete ω -stable theories. In [5], the first author and Shelah prove that any ω -stable theory that has eni-DOP or is eni-deep is not only Borel complete, but also λ -Borel complete for all λ .² As well, there are ω -stable theories with only countably many countable models

²Definitions of eni-DOP and eni-deep are given in Definitions 2.3 and 6.2, respectively, of [5], and the definition of λ -Borel complete is recalled in Section 4 of this paper.

that have Borel complete reducts. To illustrate this, we introduce three interrelated theories. The first, T_0 in the language $L_0 = \{U, V, W, R\}$ is the paradigmatic DOP theory. T_0 asserts that:

- *U*, *V*, *W* partition the universe;
- $R \subseteq U \times V \times W$;
- $T_0 \models \forall x \forall y \exists^{\infty} z R(x, y, z)$; [more formally, for each $n, T_0 \models \forall x \forall y \exists^{\geq n} z R(x, y, z)$];
- $T_0 \models \forall x \forall x' \forall y \forall y' \forall z [R(x, y, z) \land R(x', y', z) \rightarrow (x = x' \land y = y')].$

 T_0 is both ω -stable and ω -categorical and its unique countable model is rather tame. The complexity of T_0 is only witnessed with uncountable models, where one can code arbitrary bipartite graphs in an uncountable model M by choosing the cardinalities of the sets R(a, b, M) among $(a, b) \in U \times V$ to be either \aleph_0 or |M|.

To get bad behavior of countable models, we expand T_0 to an $L = L_0 \cup \{f_n : n \in \omega\}$ -theory $T \supseteq T_0$ that additionally asserts:

- Each $f_n: U \times V \to W$;
- $\forall x \forall y R(x, y, f_n(x, y))$ for each n; and
- for distinct $n \neq m$, $\forall x \forall y (f_n(x, y) \neq f_m(x, y))$.

This T is ω -stable with eni-DOP and hence is Borel complete by Theorem 4.12 of [5].

However, T has an expansion T^* in a language $L^* := L \cup \{c, d, g, h\}$ whose models are much better behaved. Let T^* additionally assert:

- $U(c) \wedge V(d);$
- $g: U \to V$ is a bijection with g(c) = d;
- Letting $W^* := \{z : R(c, d, z)\}, h : U \times V \times W^* \to W$ is an injective map that is the identity on W^* and, for each $(x, y) \in U \times V$, maps W^* onto $\{z \in W : R(x, y, z)\}$; and moreover
- *h* commutes with each f_n , i.e., $\forall x \forall y (h(x, y, f_n(c, d)) = f_n(x, y))$.

Then T^* is ω -stable and two-dimensional (the dimensions being |U| and $|W^* \setminus \{f_n(c, d) : n \in \omega\}|$), hence T^* has only countably many countable models. However, T^* visibly has a Borel complete reduct, namely T.

4 Observations about the theories *T_h*

In addition to their utility in proving Borel complete reducts, the theories T_h in Section 2 illustrate some novel behaviors. First off, model theoretically, these theories are extremely simple. More precisely, each theory T_h is weakly minimal with the geometry of every strong type trivial (such theories are known as mutually algebraic in [4]).

Additionally, the theories T_h are the simplest known examples of theories that are Borel complete, but not λ -Borel complete for all cardinals λ . For λ any infinite cardinal, λ -Borel completeness was introduced in [5]. Instead of looking at *L*-structures with universe ω , we consider X_L^{λ} , the set of *L*-structures with universe λ . We topologize X_L^{λ} analogously; namely a basis consists of all sets

$$U_{\varphi(\alpha_1,\ldots,\alpha_n)} := \{ M \in X_L^{\lambda} : M \models \varphi(\alpha_1,\ldots,\alpha_n) \}$$

for all *L*-formulas $\varphi(x_1, \ldots, x_n)$ and all $(\alpha_1, \ldots, \alpha_n) \in \lambda^n$. Define a subset of X_L^{λ} to be λ -*Borel* if it is is the smallest λ^+ -algebra containing the basic open sets, and call a function $f: X_{L_1}^{\lambda} \to X_{L_2}^{\lambda}$ to be λ -*Borel* if the inverse image of every basic open set is λ -Borel. For T, S theories in languages L_1, L_2 , respectively we say that $Mod_{\lambda}(T)$ is λ -*Borel reducible* to $Mod_{\lambda}(S)$ if there is a λ -Borel $f: Mod_{\lambda}(T) \to Mod_{\lambda}(S)$ preserving back-and-forth equivalence in both directions (i.e., $M \equiv_{\infty,\omega} N \Leftrightarrow f(M) \equiv_{\infty,\omega} f(N)$).

As back-and-forth equivalence is the same as isomorphism for countable structures, λ -Borel reducibility when $\lambda = \omega$ is identical to Borel reducibility. As before, for any infinite λ , there is a maximal class under λ -Borel reducibility, and we say a theory is λ -Borel complete if it is in this maximal class. All of the 'classical' Borel complete theories, e.g., graphs, linear orders, groups, and fields, are λ -Borel complete for all λ . However, the theories T_h are not.

Lemma 4.1. If T is mutually algebraic in a countable language, then there are at most \beth_2 pairwise $\equiv_{\infty,\omega}$ -inequivalent models (of any size).

Proof. We show that every model M has an (∞, ω) -elementary substructure of size 2^{\aleph_0} , which suffices. So, fix M and choose an arbitrary countable $M_0 \preceq M$. By Propositon 4.4 of [4], $M \setminus M_0$ can be decomposed into countable components, and any permutation of isomorphic components induces an automorphism of M fixing M_0 pointwise. As there are at most 2^{\aleph_0} non-isomorphic components over M_0 , choose a substructure $N \subseteq M$ containing M_0 and, for each isomorphism type of a component, N contains either all of copies in M (if there are only finitely many) or else precisely \aleph_0 copies if M contains infinitely many copies. It is easily checked that $N \preceq_{\infty,\omega} M$.

Corollary 4.2. No mutually algebraic theory T in a countable language is λ -Borel complete for $\lambda \geq \beth_2$. In particular, T_h is Borel complete, but not λ -Borel complete for large λ .

Proof. Fix $\lambda \geq \beth_2$. It is readily checked that there is a family of 2^{λ} graphs that are pairwise not back and forth equivalent. As there are fewer than $2^{\lambda} \equiv_{\infty,\omega}$ -classes of models of T, there cannot be a λ -Borel reduction of graphs into $Mod_{\lambda}(T)$.

In [8], another example of a Borel complete theory that is not λ -Borel complete for all λ is given (it is dubbed TK there) but the T_h examples are cleaner. In order to understand this behavior, in [8] we call a theory T grounded if every potential canonical Scott sentence σ of a model of T (i.e., in some forcing extension $\mathbb{V}[G]$ of \mathbb{V} , σ is a canonical Scott sentence of some model, then σ is a canonical Scott sentence of a model in \mathbb{V} . Proposition 5.1 of [8] proves that every theory of refining equivalence relations is grounded. By contrast, we have

Proposition 4.3. If T is Borel complete with a cardinal bound on the number of $\equiv_{\infty,\omega}$ classes of models, then T is not grounded. In particular, T_h is not grounded.

Proof. Let κ denote the number of $\equiv_{\infty,\omega}$ -classes of models of T. If T were grounded, then κ would also bound the number of potential canonical Scott sentences. As the class of graphs has a proper class of potential canonical Scott sentences, it would follow from Theorem 3.10 of [8] that T could not be Borel complete.

References

- [1] H. Friedman and L. Stanley, A Borel reducibility theory for classes of countable structures, *Journal of Symbolic Logic* **54**(1989), no. 3, 894–914.
- [2] S. Gao, *Invariant Descriptive Set Theory*, Chapman & Hall/CRC Pure and Applied Mathematics, 2008, CRC Press.
- [3] A. Kechris, *Classical Descriptive Set Theory*, Graduate Texts in Mathematics, 1995, Springer New York.
- [4] M. C. Laskowski, Mutually algebraic structures and expansions by predicates, *Journal of Symbolic Logic* **78** (2013), no. 1, 185–194. arXiv:1206.6023
- [5] M. C. Laskowski, and S. Shelah, Borel compexity of some ℵ₀-stable theories, *Fundamenta Mathematicae* 229 (2015), no. 1, 1–46.
- [6] M. C. Laskowski and D. S. Ulrich, Characterizing the existence of a Borel complete expansion (submitted). arXiv:2109.06140

- [7] R. Rast, The complexity of isomorphism for complete theories of linear orders with unary predicates, *Archive for Math. Logic* **56** (2017), no. 3–4, 289–307.
- [8] D. Ulrich, R. Rast, and M.C. Laskowski, Borel complexity and potential canonical Scott sentences, *Fundamenta Mathematicae* **239** (2017), no. 2, 101–147.