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Abstract

We prove that many seemingly simple theories have Borel complete reducts.
Specifically, if a countable theory has uncountably many complete 1-types, then it
has a Borel complete reduct. Similarly, if Th(M) is not small, then M eq has a Borel
complete reduct, and if a theory T is not ω-stable, then the elementary diagram of
some countable model of T has a Borel complete reduct.

1 Introduction
In their seminal paper [1], Friedman and Stanley define and develop a notion of Borel
reducibility among classes of structures with universe ω in a fixed, countable language L
that are Borel and invariant under permutations of ω. It is well known (see e.g., [3] or
[2]) that such classes are of the form Mod(Φ), the set of models of Φ whose universe is
precisely ω for some sentence Φ ∈ Lω1,ω, but here we concentrate on first-order, countable
theories T . For countable theories T, S in possibly different language, a Borel reduction
is a Borel function f : Mod(T ) → Mod(S) that satisfies M ∼= N if and only if f(M) ∼=
f(N). One says that T is Borel reducible to S if there is a Borel reduction f : Mod(T )→
Mod(S). As Borel reducibility is transitive, this induces a quasi-order on the class of all
countable theories, where we say T and S are Borel equivalent if there are Borel reductions
in both directions. In [1], Friedman and Stanley show that among Borel invariant classes
(hence among countable first-order theories) there is a maximal class with respect to ≤B.
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We say Φ is Borel complete if it is in this maximal class. Examples include the theories of
graphs, linear orders, groups, and fields.

The intuition is that Borel complexity of a theory T is related to the complexity of
invariants that describe the isomorphism types of countable models of T . Given an L-
structure M , one naturally thinks of the reducts M0 of M to be ‘simpler objects’ hence the
invariants for a reduct ‘should’ be no more complicated than for the original M , but we
will see that this intuition is incorrect. As a paradigm, let T be the theory of ‘independent
unary predicates’ i.e., T = Th(2ω, Un), where each Un is a unary predicate interpreted as
Un = {η ∈ 2ω : η(n) = 1}. The countable models of T are rather easy to describe. The
isomorphism type of a model is specified by which countable, dense subset of ‘branches’
is realized, and how many elements realize each of those branches. However, with Theo-
rem 3.2, we will see that T has a Borel complete reduct.

To be precise about reducts, we have the following definition.

Definition 1.1. Given an L-structureM , a reductM ′ ofM is an L′-structure with the same
universe as M , and for which the interpretation every atomic L′-formula α(x1, . . . , xk) is
an L-definable subset of Mk (without parameters). An L′-theory T ′ is a reduct of an
L-theory T if T ′ = Th(M ′) for some reduct M ′ of some model M of T .

In the above definition, it would be equivalent to require that the interpretation in M ′

of every L′-formula θ(x1, . . . , xk) is a 0-definable subset of Mk.

2 An engine for Borel completeness results
This section is devoted to proving Borel completeness for a specific family of theories. All
of the theories Th, are in the same language L = {En : n ∈ ω} and are indexed by strictly
increasing functions h : ω → ω \ {0}. For a specific choice of h, the theory Th asserts that

• Each En is an equivalence relation with exactly h(n) classes; and

• The En’s cross-cut, i.e., for all nonempty, finite F ⊆ ω, EF (x, y) :=
∧
n∈F En(x, y)

is an equivalence relation with precisely Πn∈Fh(n) classes.

It is well known that each of these theories Th is complete and admits elimination of
quantifiers. Thus, in any model of Th, there is a unique 1-type. However, the strong type
structure is complicated.1 So much so, that the whole of this section is devoted to the proof
of:

1Recall that in any structure M , two elements a, b have the same strong type, stp(a) = stp(b), if M |=
E(a, b) for every 0-definable equivalence relation. Because of the quantifier elimination, in any model
M |= Th, stp(a) = stp(b) if and only if M |= En(a, b) for every n ∈ ω.
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Theorem 2.1. For any strictly increasing h : ω → ω \ {0}, Th is Borel complete.

Proof. Fix a strictly increasing function h : ω → ω \ {0}. We begin by describing
representatives B of the strong types and a group G that acts faithfully and transitively on
B. As notation, for each n, let [h(n)] denote the h(n)-element set {1, . . . , h(n)} and let
Sym([h(n]) be the (finite) group of permutations of [h(n)]. Let

B = {f : ω → ω : f(n) ∈ [h(n)] for all n ∈ ω}

and let G = Πn∈ωSym([h(n)]) be the direct product. As notation, for each n ∈ ω, let
πn : G → Sym([h(n)]) be the natural projection map. Note that G acts coordinate-wise
on B by: For g ∈ G and f ∈ B, g ·f is the element of B satisfying g ·f(n) = πn(g)(f(n)).

Define an equivalence relation ∼ on B by:

f ∼ f ′ if and only if {n ∈ ω : f(n) 6= f ′(n)} is finite.

For f ∈ B, let [f ] denote the ∼-class of f and, abusing notation somewhat, for W ⊆ B

[W ] :=
⋃
{[f ] : f ∈ W}.

Observe that for every g ∈ G, the permutation of B induced by the action of g maps
∼-classes onto ∼-classes, i.e., G also acts transitively on B/ ∼.

We first identify a countable family of ∼-classes that are ‘sufficiently indiscernible’.
Our first lemma is where we use the fact that the function h defining Th is strictly increas-
ing.

Lemma 2.2. There is a countable set Y = {fi : i ∈ ω} ⊆ B such that whenever i 6= j,
{n ∈ ω : fi(n) = fj(n)} is finite.

Proof. We recursively construct Y in ω steps. Suppose {fi : i < k} have been chosen.
Choose an integer N large enough so that h(N) > k (hence h(n) > k for all n ≥ N ).
Now, construct fk ∈ B to satisfy fk(n) 6= fi(n) for all n ≥ N and all i < k.

Fix an enumeration 〈fi : i ∈ ω〉 of Y for the whole of the argument. The ‘indiscerni-
bility’ of Y alluded to above is formalized by the following definition and lemma.

Definition 2.3. Given a permutation σ ∈ Sym(ω), a group element g ∈ G respects σ if
g · [fi] = [fσ(i)] for every i ∈ ω.

Lemma 2.4. For every permutation σ ∈ Sym(ω), there is some g ∈ G respecting σ.
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Proof. Note that since h is increasing, h(n) ≥ n for every n ∈ ω. Fix a permutation σ ∈
Sym(ω) and we will define some g ∈ G respecting σ coordinate-wise. Using Lemma 2.2,
choose a sequence

0 = N0 � N1 � N2 � . . .

of integers such that for all i ∈ ω, both fi(n) 6= fj(n) and fσ(i)(n) 6= fσ(j)(n) hold for all
n ≥ Ni and all j < i.

Since {Ni} are increasing, it follows that for each i ∈ ω and all n ≥ Ni, the subsets
{fj(n) : j ≤ i} and {fσ(j)(n) : j ≤ i} of [h(n)] each have precisely (i + 1) elements.
Thus, for each i < ω and for each n ≥ Ni, there is a permutation δn ∈ Sym([h(n)])
satisfying ∧

j≤i

δn(fj(n)) = fσ(j)(n)

[Simply begin defining δn to meet these constraints, and then complete δn to a permutation
of [h(n)] arbitrarily.] Using this, define g := 〈δn : n ∈ ω〉, where each δn ∈ Sym([h(n)])
is constructed as above. To see that g respects σ, note that for every i ∈ ω, (g · fi)(n) =
fσ(i)(n) for all n ≥ Ni, so (g · fi) ∼ fσ(i).

Definition 2.5. For distinct integers i 6= j, let di,j ∈ B be defined by:

di,j(n) :=

{
fi(n) if n even;
fj(n) if n odd.

Let Z := {di,j : i 6= j}.

Note that di,j 6∼ fk for all distinct i, j and all k ∈ ω, hence {[fi] : i ∈ ω} and
{[di,j] : i 6= j} are disjoint.

Lemma 2.6. For all σ ∈ Sym(ω), if g ∈ G respects σ, then g · [di,j] = [dσ(i),σ(j)] for all
i 6= j.

Proof. Choose σ ∈ Sym(ω), g respecting σ, and i 6= j. ChooseN such that (g · [fi])(n) =
[fσ(i)](n) and (g · [fj])(n) = [fσ(j)](n) for every n ≥ N . Since di,j(n) = fi(n) for n ≥ N
even,

(g · di,j)(n) = πn(g)(di,j(n)) = πn(g)(fi(n)) = (g · fi)(n) = fσ(i)(n)

Dually, (g · di,j)(n) = fσ(j)(n) when n ≥ N is odd, so (g · di,j) ∼ dσ(i),σ(j).
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With the combinatorial preliminaries out of the way, we now prove that Th is Borel
complete. We form a highly homogeneous model M∗ |= Th and thereafter, all models we
consider will be countable, elementary substructures of M∗. Let A = {af : f ∈ B} and
B = {bf : f ∈ B} be disjoint sets and let M∗ be the L-structure with universe A ∪ B and
each En interpreted by the rules:

• For all f ∈ B and n ∈ ω, En(af , bf ); and

• For all f, f ′ ∈ B and n ∈ ω, En(af , af ′) iff f(n) = f ′(n).

with the other instances of En following by symmetry and transitivity. For any finite F ⊆
ω, {f�F : f ∈ B} has exactly Πn∈Fh(n) elements, hence EF (x, y) :=

∧
n∈F En(x, y) has

Πn∈Fh(n) classes in M∗. Thus, the {En : n ∈ ω} cross cut and M∗ |= Th.
Let E∞(x, y) denote the (type definable) equivalence relation

∧
n∈ω En(x, y). Then, in

M∗, E∞ partitions M∗ into 2-element classes {af , bf}, indexed by f ∈ B. Note also that
every g ∈ G induces an L-automorphism g∗ ∈ Aut(M∗) by

g∗(x) :=

{
a(g·f) if x = af for some f ∈ B
b(g·f) if x = bf for some f ∈ B

Recall the set Y = {fi : i ∈ B} from Lemma 2.2, so [Y ] = {[fi] : i ∈ ω}. Let
M0 ⊆ M∗ be the substructure with universe {af : f ∈ [Y ]}. As Th admits elimination
of quantifiers and as [Y ] is dense in B, M0 � M∗. Moreover, every substructure M of
M∗ with universe containing M0 will also be an elementary substructure of M∗, hence a
model of Th.

To show thatMod(Th) is Borel complete, we define a Borel mapping from {irreflexive
graphs G = (ω,R)} to Mod(Th) as follows: Given G, let Z(R) := {di,j ∈ Z : G |=
R(i, j)}, so [Z(R)] =

⋃
{[di,j] : di,j ∈ Z(R)}. Let MG � M∗ be the substructure with

universe
M0 ∪ {ad, bd : d ∈ [Z(R)]}

That the map G 7→MG is Borel is routine, given that Y and Z are fixed throughout.
Note that in MG, every E∞-class has has either one or two elements. Specifically, for

each d ∈ [Z(R)], the E∞-class [ad]∞ = {ad, bd}, while the E∞-class [af ]∞ = {af} for
every f ∈ [Y ].

We must show that for any two graphs G = (ω,R) and H = (ω, S), G and H are
isomorphic if and only if the L-structures MG and MH are isomorphic.

To verify this, first choose a graph isomorphism σ : (ω,R) → (ω, S). Then σ ∈
Sym(ω) and, for distinct integers i 6= j, di,j ∈ Z(R) if and only if dσ(i),σ(j) ∈ Z(S). Apply
Lemma 2.4 to get g ∈ G respecting σ and let g∗ ∈ Aut(M∗) be the L-automorphism
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induced by g. By Lemma 2.6 and Definition 2.3, it is easily checked that the restriction of
g∗ to MG is an L-isomorphism between MG and MH .

Conversely, assume that Ψ : MG → MH is an L-isomorphism. Clearly, Ψ maps
E∞-classes in MG to E∞-classes in MH . In particular, Ψ permutes the 1-element E∞-
classes {{af} : f ∈ [Y ]} of both MG and MH , and maps the 2-element E∞-classes
{{ad, bd} : d ∈ [Z(R)]} of MG onto the 2-element E∞-classes {{ad, bd} : d ∈ [Z(S)]} of
MH . That is, Ψ induces a bijection F : [Y t Z(R)]→ [Y t Z(S)] that permutes [Y ].

As well, by the interpretations of the En’s, for f, f ′ ∈ [Y t Z(R)] and n ∈ ω,

f(n) = f ′(n) if and only if F (f)(n) = F (f ′)(n).

From this it follows that F maps ∼-classes onto ∼-classes. As F permutes [Y ] and as
[Y ] =

⋃
{[fi] : i ∈ ω}, F induces a permutation σ ∈ Sym(ω) given by σ(i) is the unique

i∗ ∈ ω such that F ([fi]) = [fi∗ ].
We claim that this σ induces a graph isomorphism between G = (ω,R) and H =

(ω, S). Indeed, choose any (i, j) ∈ R. Thus, di,j ∈ Z(R). As F is ∼-preserving, choose
N large enough so that F (fi)(n) = F (fσ(i))(n) and F (fj)(n) = F (fσ(j))(n) for every
n ≥ N . By definition of di,j , di,j(n) = fi(n) for n ≥ N even, so F (di,j)(n) = F (fi)(n) =
fσ(i)(n) for such n. Dually, for n ≥ N odd, F (di,j)(n) = F (fj)(n) = fσ(j)(n). Hence,
F (di,j) ∼ dσ(i),σ(j) ∈ [Z(S)]. Thus, (σ(i), σ(j)) ∈ S. The converse direction is symmetric
(i.e., use Ψ−1 in place of Ψ and run the same argument).

Remark 2.7. If we relax the assumption that h : ω → ω \ {0} is strictly increasing, there
are two cases. If h is unbounded, then the proof given above can easily be modified to
show that the associated Th is also Borel complete. Conversely, with Theorem 6.2 of [6]
the authors prove that if h : ω → ω \ {0} is bounded, then Th is not Borel complete. The
salient distinction between the two cases is that when h is bounded, the associated group
G has bounded exponent. However, even in the bounded case Th has a Borel complete
reduct by Lemma 3.1 below.

3 Applications to reducts
We begin with one easy lemma that, when considering reducts, obviates the need for the
number of classes to be strictly increasing.

Lemma 3.1. Let L = {En : n ∈ ω} and let f : ω → ω\{0, 1} be any function. Then every
modelM of Tf , the complete theory asserting that each En is an equivalence relation with
f(n) classes, and that the {En} cross-cut, has a Borel complete reduct.
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Proof. Given any function f : ω → ω \ {0, 1}, choose a partition ω =
⊔
{Fn : n ∈ ω}

into non-empty finite sets for which Πk∈Fnf(k) < Πk∈Fmf(k) whenever n < m < ω. For
each n, let h(n) := Πk∈Fnf(k) and let E∗n(x, y) :=

∧
k∈Fn

Ek(x, y). Then, as h is strictly
increasing and {E∗n} is a cross-cutting set of equivalence relations with each E∗n having
h(n) classes.

Now let M |= Tf be arbitrary and let L′ = {E∗n : n ∈ ω}. As each E∗n described
above is 0-definable in M , there is an L′-reduct M ′ of M . It follows from Theorem 2.1
that T ′ = Th(M ′) is Borel complete, so Tf has a Borel complete reduct.

Theorem 3.2. Suppose T is a complete theory in a countable language with uncountably
many 1-types. Then every model M of T has a Borel complete reduct.

Proof. Let M |= T be arbitrary. As usual, by the Cantor-Bendixon analysis of the com-
pact, Hausdorff Stone space S1(T ) of complete 1-types, choose a set {ϕη(x) : η ∈ 2<ω} of
0-definable formulas, indexed by the tree (2<ω,E) ordered by initial segment, satisfying:

1. M |= ∃xϕη(x) for each η ∈ 2<ω;

2. For ν E η, M |= ∀x(ϕη(x)→ ϕν(x));

3. For each n ∈ ω, {ϕη(x) : η ∈ 2n} are pairwise contradictory.

By increasing these formulas slightly, we can additionally require

4. For each n ∈ ω, M |= ∀x(
∨
η∈2n ϕη(x)).

Given such a tree of formulas, for each n ∈ ω, define

δ0n(x) :=
∧
η∈2n

[ϕη(x)→ ϕηˆ0(x)] and δ1n(x) :=
∧
η∈2n

[ϕη(x)→ ϕηˆ1(x)]

Because of (4) above, M |= ∀x(δ0n(x) ∨ δ1n(x)) for each n. Also, for each n, let

En(x, y) := [δ0n(x)↔ δ0n(y)]

From the above, each En is a 0-definable equivalence relation with precisely two classes.

Claim. The equivalence relations {En : n ∈ ω} are cross-cutting.

Proof. It suffices to prove that for every m > 0, the equivalence relation E∗m(x, y) :=∧
n<mEn(x, y) has 2m classes. So fix m and choose a subset Am = {aη : η ∈ 2m} ⊆ M

forming a set of representatives for the formulas {ϕη(x) : η ∈ 2m}. It suffices to show
that M |= ¬E∗m(aη, aν) whenever η 6= ν are from 2m. But this is clear. Fix distinct
η 6= ν and choose any k < m such that η(k) 6= ν(k). Then M |= ¬Ek(aη, aν), hence
M |= ¬E∗m(aη, aν).

7



Thus, taking the 0-definable relations {En}, M has a reduct that is a model of Tf
(where f is the constant function 2). As reducts of reducts are reducts, it follows from
Lemma 3.1 and Theorem 2.1 that M has a Borel complete reduct.

We highlight how unexpected Theorem 3.2 is with two examples. First, the theory of
‘Independent unary predicates’ mentioned in the Introduction has a Borel complete reduct.

Next, we explore the assumption that a countable, complete theory T is not small, i.e.,
for some k there are uncountably many k-types. We conjecture that some model of T
has a Borel complete reduct. If k = 1, then by Theorem 3.2, every model of T has a
Borel complete reduct. If k > 1 is least, then it is easily seen that there is some complete
(k − 1) type p(x1, . . . , xk−1) with uncountably many complete q(x1, . . . , xk) extending
p. Thus, if M is any model of T realizing p, say by ā = (a1, . . . , ak−1), the expansion
(M,a1, . . . , ak−1) has a Borel complete reduct, also by Theorem 3.2. Similarly, we have
the following result.

Corollary 3.3. Suppose T is a complete theory in a countable language that is not small.
Then for any model M of T , M eq has a Borel complete reduct.

Proof. Let M be any model of T and choose k least such that T has uncountably many
complete k-types consistent with it. In the language Leq, there is a sort Uk and a definable
bijection f : Mk → Uk. Hence Th(M eq) has uncountably many 1-types consistent with
it, each extending Uk. Thus, M eq has a Borel complete reduct by Theorem 3.2.

Finally, recall that a countable, complete theory is not ω-stable if, for some countable
model M of T , the Stone space S1(M) is uncountable. From this, we immediately obtain
our final corollary.

Corollary 3.4. If a countable, complete T is not ω-stable, then for some countable model
M of T , the elementary diagram of M in the language L(M) = L ∪ {cm : m ∈ M} has
a Borel complete reduct.

Proof. Choose a countableM so that S1(M) is uncountable. Then, in the language L(M),
the theory of the expanded structure MM in the language L(M) has uncountably many 1-
types, hence it has a Borel complete reduct by Theorem 3.2.

The results above are by no means characterizations. Indeed, there are many Borel
complete ω-stable theories. In [5], the first author and Shelah prove that any ω-stable the-
ory that has eni-DOP or is eni-deep is not only Borel complete, but also λ-Borel complete
for all λ.2 As well, there are ω-stable theories with only countably many countable models

2Definitions of eni-DOP and eni-deep are given in Definitions 2.3 and 6.2, respectively, of [5], and the
definition of λ-Borel complete is recalled in Section 4 of this paper.
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that have Borel complete reducts. To illustrate this, we introduce three interrelated theo-
ries. The first, T0 in the language L0 = {U, V,W,R} is the paradigmatic DOP theory. T0
asserts that:

• U, V,W partition the universe;

• R ⊆ U × V ×W ;

• T0 |= ∀x∀y∃∞zR(x, y, z); [more formally, for each n, T0 |= ∀x∀y∃≥nzR(x, y, z)];

• T0 |= ∀x∀x′∀y∀y′∀z[R(x, y, z) ∧R(x′, y′, z)→ (x = x′ ∧ y = y′)].

T0 is both ω-stable and ω-categorical and its unique countable model is rather tame. The
complexity of T0 is only witnessed with uncountable models, where one can code arbi-
trary bipartite graphs in an uncountable model M by choosing the cardinalities of the sets
R(a, b,M) among (a, b) ∈ U × V to be either ℵ0 or |M |.

To get bad behavior of countable models, we expand T0 to an L = L0 ∪ {fn : n ∈ ω}-
theory T ⊇ T0 that additionally asserts:

• Each fn : U × V → W ;

• ∀x∀yR(x, y, fn(x, y)) for each n; and

• for distinct n 6= m, ∀x∀y(fn(x, y) 6= fm(x, y)).

This T is ω-stable with eni-DOP and hence is Borel complete by Theorem 4.12 of [5].
However, T has an expansion T ∗ in a language L∗ := L ∪ {c, d, g, h} whose models

are much better behaved. Let T ∗ additionally assert:

• U(c) ∧ V (d);

• g : U → V is a bijection with g(c) = d;

• LettingW ∗ := {z : R(c, d, z)}, h : U×V ×W ∗ → W is an injective map that is the
identity on W ∗ and, for each (x, y) ∈ U × V , maps W ∗ onto {z ∈ W : R(x, y, z)};
and moreover

• h commutes with each fn, i.e., ∀x∀y(h(x, y, fn(c, d)) = fn(x, y)).

Then T ∗ is ω-stable and two-dimensional (the dimensions being |U | and |W ∗ \ {fn(c, d) :
n ∈ ω}|), hence T ∗ has only countably many countable models. However, T ∗ visibly has
a Borel complete reduct, namely T .
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4 Observations about the theories Th
In addition to their utility in proving Borel complete reducts, the theories Th in Section 2
illustrate some novel behaviors. First off, model theoretically, these theories are extremely
simple. More precisely, each theory Th is weakly minimal with the geometry of every
strong type trivial (such theories are known as mutually algebraic in [4]).

Additionally, the theories Th are the simplest known examples of theories that are Borel
complete, but not λ-Borel complete for all cardinals λ. For λ any infinite cardinal, λ-Borel
completeness was introduced in [5]. Instead of looking at L-structures with universe ω,
we consider Xλ

L, the set of L-structures with universe λ. We topologize Xλ
L analogously;

namely a basis consists of all sets

Uϕ(α1,...,αn) := {M ∈ Xλ
L : M |= ϕ(α1, . . . , αn)}

for all L-formulas ϕ(x1, . . . , xn) and all (α1, . . . , αn) ∈ λn. Define a subset of Xλ
L to be

λ-Borel if it is is the smallest λ+-algebra containing the basic open sets, and call a function
f : Xλ

L1
→ Xλ

L2
to be λ-Borel if the inverse image of every basic open set is λ-Borel. For

T, S theories in languages L1, L2, respectively we say that Modλ(T ) is λ-Borel reducible
to Modλ(S) if there is a λ-Borel f : Modλ(T ) → Modλ(S) preserving back-and-forth
equivalence in both directions (i.e., M ≡∞,ω N ⇔ f(M) ≡∞,ω f(N)).

As back-and-forth equivalence is the same as isomorphism for countable structures,
λ-Borel reducibility when λ = ω is identical to Borel reducibility. As before, for any
infinite λ, there is a maximal class under λ-Borel reducibility, and we say a theory is λ-
Borel complete if it is in this maximal class. All of the ‘classical’ Borel complete theories,
e.g., graphs, linear orders, groups, and fields, are λ-Borel complete for all λ. However, the
theories Th are not.

Lemma 4.1. If T is mutually algebraic in a countable language, then there are at most i2

pairwise ≡∞,ω-inequivalent models (of any size).

Proof. We show that every model M has an (∞, ω)-elementary substructure of size 2ℵ0 ,
which suffices. So, fix M and choose an arbitrary countable M0 � M . By Propositon 4.4
of [4], M \M0 can be decomposed into countable components, and any permutation of
isomorphic components induces an automorphism of M fixing M0 pointwise. As there
are at most 2ℵ0 non-isomorphic components over M0, choose a substructure N ⊆ M
containing M0 and, for each isomorphism type of a component, N contains either all of
copies in M (if there are only finitely many) or else precisely ℵ0 copies if M contains
infinitely many copies. It is easily checked that N �∞,ω M .

Corollary 4.2. No mutually algebraic theory T in a countable language is λ-Borel com-
plete for λ ≥ i2. In particular, Th is Borel complete, but not λ-Borel complete for large
λ.
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Proof. Fix λ ≥ i2. It is readily checked that there is a family of 2λ graphs that are
pairwise not back and forth equivalent. As there are fewer than 2λ ≡∞,ω-classes of models
of T , there cannot be a λ-Borel reduction of graphs into Modλ(T ).

In [8], another example of a Borel complete theory that is not λ-Borel complete for all
λ is given (it is dubbed TK there) but the Th examples are cleaner. In order to understand
this behavior, in [8] we call a theory T grounded if every potential canonical Scott sentence
σ of a model of T (i.e., in some forcing extension V[G] of V, σ is a canonical Scott sentence
of some model, then σ is a canonical Scott sentence of a model in V. Proposition 5.1 of
[8] proves that every theory of refining equivalence relations is grounded. By contrast, we
have

Proposition 4.3. If T is Borel complete with a cardinal bound on the number of ≡∞,ω-
classes of models, then T is not grounded. In particular, Th is not grounded.

Proof. Let κ denote the number of ≡∞,ω-classes of models of T . If T were grounded,
then κ would also bound the number of potential canonical Scott sentences. As the class
of graphs has a proper class of potential canonical Scott sentences, it would follow from
Theorem 3.10 of [8] that T could not be Borel complete.
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