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Abstract. Given a sequence {αn} in (0, 1) converging to a rational, we exam-

ine the model theoretic properties of structures obtained as limits of Shelah-

Spencer graphs G(m,m−αn ). We show that in most cases the model theory is
either extremely well-behaved or extremely wild, and characterize when each

occurs.

1. Introduction

The study of random graphs, initiated by Erdös and Renyi in 1959, was subse-
quently examined from a logical viewpoint – notably in papers of Shelah, Spencer,
and Baldwin ([6], [1]). In particular, for α irrational in (0, 1) the model theory
connected with the graphs G(n, n−α) has been extensively studied. The latter ob-
jects are probability spaces whose events consist of all order n graphs – each of
these occurs with a probability uniquely determined by demanding that every po-
tential edge occurs independently with probability n−α. A key result of Shelah and
Spencer [6] is the following 0-1 law: For σ any first order sentence in the language
of graphs, limn→∞ Pr[G(n, n−α) |= σ] is 0 or 1. Thus, for a fixed irrational α the
almost sure theory, denoted Tα, is complete. More recently, the second author gave
an ∀∃-axiomatization for Tα (see [5]).

Baldwin and Shelah pointed out in [1] that models of the resulting theory could
be obtained via Hrushovski’s amalgamation construction. This proceeds by amal-
gamating a class of finite structures to obtain a generic of the class. The amalga-
mation is controlled by a notion of “strong substructure”, which is in turn often
determined by a pre-dimension function. In the current context such a function
limits the proportion of new edges to new vertices in a strong extension.

Arguably, the crucial observation in the connection between the probabilistic
and model-theoretic approaches is that the expected number of copies of a given
extension is determined by precisely such a function. Specifically, if a given graph
A almost surely occurs as a subgraph of G(n, n−α) in the limit, then the expected
number of copies of an extension B is asymptotic to nδ(B/A), where δ(B/A) is a
predimension function given by |B \A|−αe(B/A), for e(B/A) the number of edges
in AB that aren’t in A. When α is irrational, δ(B/A) is never zero, hence nδ(B/A)

has asymptotic limit zero or one. However, when α is rational, this need not be the
case, and indeed Spencer demonstrated in [7] that G(n, n−α) does not have a 0-1
law in this case.

This paper examines the rational case from a model-theoretic perspective. There
are two distinct ways of handling pairs of graphs A ⊆ B with δ(B/A) = 0, which
leads to two distinct classes, which we denote by (Kα,≤α) and (K+

α ,4α). On the
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surface, these classes are similar. They both satisfy Baldwin and Shi’s notion of full
amalgamation and have generic structures, each unique up to isomorphism, which
we denote by Mα and M+

α , respectively.
However, when we look at the theories of these structures, we see a Jekyll and

Hyde dichotomy. The theory of Mα is tame, being decidable, ∀∃-axiomatizable,
and ℵ0-stable. On the other hand, Section 3 is devoted to showing that the theory
of M+

α is wild. There is a subtheory Σ+
α that allows coding of finite sets, interprets

a fragment of arithmetic, and is essentially undecidable.
In the final section, we give a partial explanation for the lack of a 0-1 law when

α is rational. We see that any ultraproduct of generics coded by a sequence {αn}
converging to α from below has a theory that is elementarily equivalent to the
‘nice’ Mα. On the other hand, any ultraproduct of generics coded by a sequence
{αn} converging to α from above has a theory that is elementarily equivalent to
the ‘uncouth’ M+

α . This gives a model-theoretic parallel to Spencer’s result in [7]
that the blockage of a 0-1 law is really a one-sided phenomenon, with convergence
to α from above being the problematic part.

2. Parameterized families of finite graphs

For the purposes of this paper, we restrict our attention to classes of graphs.
In particular, we work in the language L = {E} of a single, binary relation and
all L-structures we consider have E being symmetric and irreflexive. However, by
using coding techniques developed by Ikeda, Kikyo, and Tsuboi in Lemma 3.6 of
[4], all of our results extend to any finite, relational language in which each relation
is symmetric in its variables.

As notation, we denote A ∪ B simply by AB, and write A ⊆ω M to indicate
that A is a finite substructure of M . For any finite graph A, we implicitly fix an
enumeration of A and denote its quantifier free type by ∆A(x̄).

We begin by defining two separate parametrized families of classes (K,≤) of
finite graphs. Fix a real number α ∈ (0, 1) and define

δα(A) = v(A)− αe(A)

for any finite (symmetric) graph A, where v(A) denotes the number of vertices of
A, and e(A) denotes the number of edges. As notation, if A ⊆ B, let δα(B/A) =
δα(B) − δα(A). If A,B,C are finite graphs satisfying B ∩ C = A, the free join
of B,C over A, denoted B ⊕A C, is the graph D with vertices B ∪ C, and edges
ED = EB ∪ EC . More generally, if {Bi : i < n} satisfy Bi ∩ Bj = A for all i 6= j,
then ⊕i<n(Bi/A) has universe

⋃
i<nBi and edge set

⋃
i<nE

Bi .
The following computations are routine:

Lemma 2.1. For all α ∈ (0, 1) and for all finite graphs A,B,Bi, C,

(1) δα(⊕i<n(Bi/A)) =
∑
i<n δα(Bi/A) and

(2) [Monotonicity] If A ⊆ B and B ∩ C = ∅, then δα(BC/AC) ≤ δα(B/A).

Definition 2.2. Our two parametrized classes are (Kα,≤α) and (K+
α ,4α), where

• Kα = {finite A : δα(B) ≥ 0 for every substructure B ⊆ A} and A ≤α B if
and only if A ⊆ B and δα(C/A) ≥ 0 for all A ⊆ C ⊆ B.
• K+

α = {finite A : δα(B) > 0 for every nonempty B ⊆ A} and A 4α B if
and only if A ⊆ B and δα(C/A) > 0 for all A ( C ⊆ B.
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Obviously, K+
α ⊆ Kα, and A 4α B implies A ≤α B. Furthermore, if α is

irrational, then the classes (K+
α ,4α) and (Kα,≤α) are identical. The results of the

following Lemma are well known for the classes (Kα,≤α), but, using Lemma 2.1,
the verifications for (K+

α ,4α) are equally routine.

Lemma 2.3. For every α ∈ (0, 1), both of the classes (Kα,≤α) and (K+
α ,4α)

satisfy the following axioms of a class (K,≤):

(1) K is closed under isomorphisms and substructures;
(2) The relation A ≤ B is invariant under isomorphisms of the pair (A,B);
(3) ≤ is a partial order on K, with ∅ ≤ A for all A ∈ K;
(4) (K,≤) is a full amalgamation class in the sense of Baldwin-Shi [3], i.e., if

A,B,C ∈ K and A ≤ B, A ⊆ C, then C ≤ D, where D = B ⊕A C
(5) If A,B,C ∈ K and A ≤ B, then A ∩ C ≤ B ∩ C.

Definition 2.4. Given a class (K,≤) of finite structures, an element A ∈ K,
and a (possibly infinite) structure M such that every finite substructure of M is
an element of K, a strong embedding f : A → M is an isomorphic embedding
satisfying A ≤ B for all finite B satisfying A ⊆ B ⊆ M . A (countable) structure
M is (K,≤)-generic if it satisfies the following three conditions:

(1) There are 〈An : n ∈ ω〉 from K such that A0 ≤ A1 ≤ . . . and M =⋃
n∈ω An;

(2) Every A ∈ K embeds strongly into M ; and
(3) For all pairs A ≤ B from K, every strong embedding f : A → M extends

to a strong embedding g : B →M .

It is well known that if (K,≤) is a class of finite structures closed under isomor-
phism, substructure, joint embedding, and amalgamation, then there is a (K,≤)-
generic structure M . Moreover, M is unique up to isomorphism. In our context,
all of our classes (Kα,≤α) and (K+

α ,4α) satisfy amalgamation by Lemma 2.3(4)
and joint embedding since ∅ ≤ A for every A in all of our families.

Definition 2.5. For each α ∈ (0, 1), let Mα denote the (Kα,≤α)-generic, and let
M+
α denote the (K+

α ,4α)-generic.

To understand these structures, we proffer three axiom schemata for a given
amalgamation class (K,≤); note that collectively these encode Baldwin and She-
lah’s notion of a semi-generic structure in [1]:

Definition 2.6.

• Universal sentences σ(m), indexed by m ∈ ω, asserting that every m-
element substructure is an element of K;
• ∀∃ sentences ψ(A,B), indexed by all pairs A ≤ B from K stating that

every embedding of A into a model M of ψ(A,B) extends to an embedding
of B into M ;
• ∀∃∀ sentences θ(A,B,m), indexed by A ≤ B from K and m ∈ ω, asserting

that every embedding of A into a model M of θ(A,B,m) extends to an
embedding of B into M such that for every C satisfying B ⊆ C ⊆ M
with |C \ B| ≤ m, either B ≤ C or the substructure of M with universe
BC ∼= B ⊕A (C \B)A.

If (K,≤) is a full amalgamation class (i.e., satisfies the conclusions of Lemma 2.3)
then the (K,≤)-generic structure M satisfies all of the axioms stated above. (To
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see that M |= θ(A,B,m), choose any A′ ⊆ M isomorphic to A. Choose n least
such that A′ ⊆ An, where An ≤ M . Let D = An ⊕A B. Then An ≤ D, so choose
a strong embedding g : D → M that is the identity on An. Then g|B has the
required property.)

As notation, we let Sα and S+
α denote the first two schemata with respect to

(Kα,≤α) and (K+
α ,4α). Dually, let Σα and Σ+

α denote all three schemata with
respect to (Kα,≤α) and (K+

α ,4α), respectively.
The next two Theorems are culminations of work by many authors.

Theorem 2.7. If α ∈ (0, 1) is irrational, then Th(Mα) is axiomatized by Sα. It
is decidable, stable, but not superstable, with nfcp, and has the Dimensional Order
Property (DOP). Furthermore, it is precisely the almost sure theory of the sequence
of random graphs G(n, n−α).

Proof. Shelah and Spencer (see e.g., [6] and [7]) showed that the almost sure theory
of the random graphs G(n, n−α) contains Σα, and that Σα is complete and therefore
decidable. The connection with model theory was first noted by Baldwin. In [1]
and [2] Baldwin and Shelah proved that the (Kα,≤α)-generic Mα |= Σα, and that
the theory is strictly stable, with nfcp and has the DOP. In [5], the second author
proved that Sα entails Σα. �

Theorem 2.8. If α ∈ (0, 1] is rational, then again Th(Mα) is axiomatized by Sα.
This theory is decidable and ℵ0-stable.

Proof. For rational α, Shelah and Spencer proved that there is no complete, almost
sure theory of the random graphs G(n, n−α). Nevertheless, Baldwin and Shi [3]
showed that a (Kα,≤α)-generic exists, and proved that its theory is ℵ0-stable. In
[1], Baldwin and Shelah proved that Σα is equivalent to Th(Mα), thereby yielding
decidability of the theory. Later, Ikeda, Kikyo, and Tsuboi [4] proved that Sα is
equivalent to the theory of the generic. �

Note that for α irrational, the classes (Kα,≤α) and (K+
α ,4α) coincide, hence

Mα is isomorphic to M+
α . However, as we see in the next section, when α is rational,

the theory of M+
α is substantially different from the theory of Mα.

3. 0-Extensions and the theory Σ+
r

For the whole of this section, we fix a rational r ∈ (0, 1) and investigate the
theory Σ+

r . We see that this theory is far from being decidable and has 2ℵ0 distinct
completions. The engine that is driving the distinction between the well-behaved
theory Σr and the wild Σ+

r is how they handle minimal 0-extensions, which we now
define.

Definition 3.1. Fix a rational r ∈ (0, 1). A minimal 0-extension is a pair of
structures A ( B from K+

r such that δr(B/A) = 0, but A 4r C for any proper
A ⊆ C ( B. A biminimal 0-extension (A,B) is a minimal 0-extension in which
every element of A is connected to at least one element of B \A.

The notion of a minimal 0-extension is a special type of minimal pair, which has
been used by many authors. The notion of biminimality is used by Wagner in his
exposition of the Hrushovski constructions [9].

Note that if (A,B) is a minimal 0-extension in K+
r , then the same pair satisfies

A ≤r B from the point of view of (Kr,≤r). Thus, in the (Kr,≤r)-generic Mr, for
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every embedding f : A → Mr, there are infinitely many embeddings gi : B → Mr

extending f . This can be thought of as a type of homogeneity possessed by Mr.
On the other hand, since A 64r B for a minimal 0-extension, given an embedding
f : A → M+

r into the (K+
r ,4r)-generic, the number of embeddings g : B → M+

r

extending f can vary. As we will see with Theorem 3.5, this freedom allows us to
interpret Robinson’s R into any model of Σ+

r . It is necessary to consider biminimal
0-extensions because we want to ‘recover A’ from an arbitrary embedding of B into
a model of Σ+

r .
We begin by showing that biminimal 0-extensions exist in abundance.

Lemma 3.2. Fix any rational r ∈ (0, 1). For every integer n > 0, there is an
integer m such that for any A ∈ K+

r of size n, there is a graph C ⊇ A such that
|C \A| = m and (A,C) is a biminimal 0-extension.

Proof. First, note that if (A,C) is a biminimal 0-extension, and f : A→ A′ is any
bijection (possibly not preserving the edge relation) then there is a biminimal 0-
extension (A′, C ′), where the subgraph C ′ \A′ is isomorphic to the subgraph C \A,

and where EC
′
(c′, f(a)) holds if and only if EC(c, a).

As a consequence, if we can construct a biminimal 0-extension (A,C∗) for any
A ∈ K+

r with |A| = n, then taking m = |C∗ \ A|, the construction will yield a
biminimal 0-extension (A′, C ′) with |C ′ \A′| = m for every A′ ∈ Kr with |A′| = n.
Thus we fix a nonempty A ∈ K+

r with |A| = n and define an appropriate C∗.
Before doing so, we introduce some other relevant graphs.

In [4], Ikeda, Kikyo, and Tsuboi demonstrate the existence of a ‘minimal, proper,
(1 + r)-component’ D(a, b). That is, D is a graph, a, b ∈ D, a 6= b, ¬E(a, b),
δr(X) ≥ 1 + r for any X satisfying {a, b} ⊆ X ⊆ D with equality holding only
when X = D, and δr(X) ≥ 1 for every nonempty X ⊆ D, δr(X) ≥ 1.

For any k ≥ 1, let {b0, . . . , bk} be a null graph, and for each i < k let D(bi, bi+1)
be isomorphic to D(a, b), with D(bi, bi+1)∩D(bj , bj+1) = {bi, bi+1} ∩ {bj , bj+1} for
all i 6= j, and let

Dk(b0, . . . , bk) = D(b0, b1)⊕b1 D(b1, b2)⊕b2 · · · ⊕bk−1
D(bk−1, bk)

We make two assertions:

(1) For nonempty X ⊆ Dk(b0, . . . , bk), δr(X) ≥ 1 + (l − 1)r, where l = |X ∩
{b0, . . . , bk}|;

(2) If {b0, . . . , bk} ⊆ X ⊆ Dk(b0, . . . , bk), then δr(X) = 1 + kr if and only if
X = Dk(b0, . . . , bk).

For the first assertion, note that since r < 1, it suffices to partition X into
its connected components and handle each component separately. So assume X
is nonempty and connected, and let l = |X ∩ {b0, . . . , bk}|. If l = 0, then X ⊆
D(bi, bi+1) for some i, hence δr(X) ≥ 1 by the definition of being a (1 + r)-
component. If l 6= 0, then by connectedness, X ∩ {b0, . . . , bk} = {bi, . . . , bi+l−1} for
some i. Let X−1 = {b0}, Xj = X ∩D(bj , bj+1) for each j < k, and Xk+1 = {bk}.
ThenX = Xi−1⊕bi · · ·⊕bi+l−1

Xi+l, where δr(Xi−1), δr(Xi+l) ≥ 1 and δr(Xj) ≥ 1+r
for all i ≤ j < i+ l. It follows that δr(X) ≥ 2 + (l− 1)(1 + r)− l = 1 + (l− 1)r, as
desired.

For the second assertion, suppose {b0, . . . , bk} ⊆ X. Then we can write X =
X0⊕b1X1⊕· · ·⊕bk−1

Xk−1, where Xi = D(bi, bi+1). Since {bi, bi+1} ⊆ Xi for each i
δr(Xi) ≥ 1 + r, with equality holding if and only if Xi = D(bi, bi+1) and the second
assertion follows.
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Next, let Ck = Ck(b∗, b1, . . . , bk−1) be the graph formed from Dk(b0, . . . , bk) by
identifying the nodes b0 and bk into a new node b∗. That is, E(b∗, y) holds in Ck
if and only if either E(b0, y) or E(bk, y) holds in Dk(b0, . . . , bk). One can think of
Ck as a ‘circle’. In particular, there is an automorphism of Ck fixing {b∗, . . . , bk−1}
setwise formed by b∗ 7→ b1, bi 7→ bi+1, bk−1 7→ b∗, and extended by choosing
isomorphisms between D(bi, bi+1) and D(bi+1, bi+2), etc.

We claim that for any nonempty Y ⊆ Ck, δr(Y ) ≥ mr, where m = Y ∩
{b∗, b1, . . . , bk−1}, with equality holding only when Y = Ck.

To see this, first suppose that b∗ 6∈ Y . Then Y can be construed as a subgraph
of Dk(b0, . . . , bk), and Y ∩{b∗, b1, . . . , bk−1} = Y ∩{b0, . . . , bk}, so δr(Y ) ≥ 1+(m−
1)r > mr since r < 1. Second, by iterating the automorphism above, we again
obtain δr(Y ) > mr unless {b∗, b1, . . . , bk−1} ⊆ Y . Finally, assume that m = k, i.e.,
{b∗, b1, . . . , bk−1} ⊆ Y . In this case, letX∗ be the ‘unpacking’ of Y inDk(b0, . . . , bk),
i.e., the nodes of X∗ are Y \{b∗}∪{b0, bk}. Then v(X∗) = v(Y )+1, e(X∗) = e(Y ),
and |X ∩{b0, . . . , bk}| = k+ 1. From above, δr(X

∗) ≥ 1 +kr, with equality holding
if and only if X∗ = Dk(b0, . . . , bk). Thus, δr(Y ) ≥ kr, with equality holding if and
only if Y = Ck.

We can now produce a graph C∗ ⊇ A such that (A,C∗) is a biminimal 0-
extension. Fix an enumeration {a0, . . . , an−1} of A. Define C∗ to be the graph
with universe the disjoint union A∪Cn(b∗, . . . , bn−1) and edges defined by EC

∗
(x, y)

iff (x, y) ∈ A and EA(x, y), or (x, y) ∈ Cn and ECn(x, y), or (x, y) = (a0, b
∗), or

(x, y) = (ai, bi) for some 1 ≤ i < n. Then for any Y ⊆ Cn, if l = |Y ∩{b∗, . . . , bn−1}|,
then δr(AY/A) = δr(Y )− lr. From above, this number is always nonnegative, and
is zero precisely when Y is empty or equal to Cn. �

We now use the existence of a biminimal 0-extensions (A,B) with |A| = k+ 1 to
be able to ‘mark’ any desired subset X ⊆ [S]k of any finite subset S of any model
M of Σ+

r . The idea of using the existence of an extension to code arbitrary subsets
of a given finite set was used by Spencer in [7]. Recall that for any set Y , [Y ]k

denotes the subsets of Y with cardinality precisely k.

Proposition 3.3 (Definability of Finite Relations). For every rational r ∈ (0, 1)
and every integer k ≥ 1 there is a definable Rk(x1, . . . , xk, v), symmetric in the first
k variables, such that for every M |= Σ+

r , for every finite S ⊆ M , and for every
subset X ⊆ [S]k, there is v ∈M such that for any ā ∈ Sk with k distinct entries,

M |= Rk(ā, v) if and only if range(ā) ∈ X

Proof. Fix a rational r ∈ (0, 1) and an integer k ≥ 1. Let m be the integer from
Lemma 3.2 corresponding to k + 1. Let Rk(x1, . . . , xk, v) assert that there exist ȳ
with |ȳ| = m such that all of the entries in x̄ȳv are distinct, ¬E(xi, v) for all i, and
the pair (x̄v, x̄vȳ) is a biminimal 0-extension.

To see that this works, let M |= Σ+
r , let S ⊆ M be finite, and let X ⊆ [S]k be

given. For the moment, view the subgraph S as a graph in its own right. Choose
an element e (not necessarily in M) and let Se be the one-point extension of S
with e unconnected to any vertex of S. For each A ∈ X, let CA ⊇ Ae be such that
(Ae,CA) is a biminimal 0-extension, |CA \Ae| = m, and CA ∩ Se = Ae.

Claim 1. A 4r CA for each A ∈ X.

Proof. Choose Z 6= A such that A ⊆ Z ⊆ CA. If Z = Ae, then δr(Z/A) = 1. If Z =
CA, then δr(Z/A) = δr(Z/Ae) + δr(Ae/A) = 0 + 1 = 1. If Z = CA \ {e}, then since
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e is connected to some element of Z by biminimality, δr(Z/A) ≥ δr(Ze/Ae)+r ≥ r.
In all other cases, Ze 6= Ae,CA, so δr(Z/A) ≥ δr(Ze/Ae) > 0. �

Letting W = ⊕ACA, it follows immediately from Claim 1 that S 4r W . As well,
note that for any V satisfying Se ⊆ V ⊆ W , we have δr(V/Se) ≥ 0, with equality
holding if and only if V = Se ∪ {CA : A ∈ Y } for some subset Y ⊆ X.

Since M |= θ(S,W,m), there is an embedding g : W → M such that g|S = id
and for any B ⊆ M \ g(W ) with |B| ≤ m, either B 4r W or the subgraph of M
with universe Bg(W ) is isomorphic to BS ⊕S g(W ).

We now work entirely within M . By abuse of notation, we write W for g(W ), e
for g(e), and CA for g(CA) for each A ∈ X. That is, e,W , and each CA are from
M .

Clearly, for every A ∈ X and every enumeration ā of A, M |= Rk(ā, e), as
witnessed by CA. Conversely, choose any B ∈ [S]k and any enumeration b̄ of B
such that M |= Rk(b̄, e). Choose any graph C∗ ⊆M witnessing this, i.e., Be ⊆ C∗,
|C∗ \Be| = m, and (Be,C∗) is a biminimal 0-extension. We argue that B ∈ X.

Begin by partitioning C∗ into three sets,

P = C∗ ∩ Se, Q = (C∗ ∩ SW ) \ P, R = C∗ \ SW

Claim 2. RSW ∼= RS ⊕S W .

Proof. This is trivial if R is empty, so assume otherwise. If R 6= ∅, then Be ⊆
C∗∩SW ( C∗, so δr(C

∗/C∗∩SW ) ≤ 0, hence δr(SWR/SW ) ≤ 0 by monotonicity.
Thus, SW 64r SWR. But also, |R| ≤ m, so the last statement follows from our
choice of embedding g. �

We next argue that Q 6= ∅. Since (Be,C∗) is biminimal, there is some c ∈ C∗
such that E(c, e) holds. E is irreflexive and e is unconnected to any c ∈ S, so
c 6∈ P . However, c ∈ R contradicts the conclusion of Claim 2. Thus, c ∈ Q, so Q is
nonempty.

Claim 3. RP = Be, i.e., C∗ = BeQ.

Proof. Since RSW ∼= RS ⊕S W , it follows that C∗ = RPQ ∼= RP ⊕P QP . So

0 = δr(C
∗/Be) = δr(RP/Be) + δr(QPe/Be)− δr(P/Be)

As well, δr(QSe/Se) ≥ 0, hence δr(QP/P ) ≥ 0. Since δr(QPe/Be)− δr(P/Be) =
δr(QP/P ), we must have δr(RP/Be) ≤ 0. But Be ⊆ RP ⊆ C∗, so δr(RP/Be) ≥ 0,
and is only equal to zero when RP = Be or RP = C∗. However, the latter is
impossible since Q is nonempty. �

Now Q ⊆ W \ Se, and W \ Se is a free join of sets CA over Se. Choose A ∈ X
such that Q ∩ CA 6= ∅.

Claim 4. Q = (CA \ Se).

Proof. We first argue that Q ⊆ CA. If this were not the case, then let QA = Q∩CA
and Q′ = Q \ CA. Then C∗ = BeQ would be isomorphic to QABe⊕Be Q′Be. But
then,

0 = δr(C
∗/Be) = δr(QABe/Be) + δr(Q

′Be/Be)

which is impossible, since both summands are strictly positive by the minimality
of (Be,C∗). Thus, Q ⊆ CA. But Q is disjoint from Se and |Q| = m = |CA \ Se|,
hence Q = CA \ Se. �
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By biminimality and the construction of CA, {s ∈ S : s is connected to some
node in CA \ Se} = A. But also, by biminimality, every element of B is connected
to some node of Q = (CA \ Se). Thus, B = A and A ∈ X, as desired. �

This coding technique is enough to show that any model of Σ+
r interprets Robin-

son’s R, which we now define.

Definition 3.4. Let LR = {+, ·,≤, ηk}k∈ω. Robinson’s R is the following LR-
theory: For every k, ` ∈ ω:

(1) ηk + η` = ηk+`
(2) ηk · η` = ηk`
(3) ηk 6= η` for k 6= `
(4) ∀x(x ≤ ηk → x = η0 ∨ . . . ∨ x = ηk)
(5) ∀x(x ≤ ηk ∨ ηk ≤ x)

Theorem 3.5. For any rational r ∈ (0, 1), the theory Σ+
r interprets Robinson’s R.

Proof. Fix a rational r ∈ (0, 1). For ease of discourse, also fix a model M |= Σ+
r .

The interpretation (Ω,+, ·,≤, ηk)k∈ω we give will be uniform in M . Also fix a
minimal 0-extension (A,B). That is, A,B ∈ K+

r , A ( B, δr(B) = δr(A), but
δr(B

′) > δr(A) for every A ( B′ ( B. As notation, let C be the subgraph with
universe B \A. Suppose |A| = n and |C| = m.

Let A = {a ∈ Mn : there is an isomorphism f : A → a such that for all
embeddings g1, g2 : B → M extending f , either g1(B) = g2(B) (setwise) or else
g1(B) ∩ g2(B) = a}.

For a ∈ A, let Ca = {c ∈ Mm : (a, ac) ∼= (A,B)} and let C∗a =
⋃
Ca. It follows

from our definition of A that c∩ c′ = ∅ for all distinct c, c′ ∈ Ca. A subset Ba ⊆ C∗a
is a basis for Ca if it consists of exactly one element from each c ∈ Ca.

We wish to define the notion of ‘Ca and Ca′ having the same cardinality.’ Propo-
sition 3.3 allows us to succeed, at least when the sets Ca and Ca′ are finite. For a
fixed parameter u, let Rku(x̄) denote the relation Rk(x̄, u). Then for a, a′ ∈ A, say
a ∼ a′ if and only if ∃u, v, w[R1

u(M) ∩ C∗a is a basis for Ca, R1
v(M) ∩ C∗a′ is a basis

for C∗a′ , and R2
w(M) codes a bijection between R1

u(M) ∩ C∗a and R1
v(M) ∩ C∗a′ ].

More formally, say that a set R of unordered pairs ‘codes a bijection between the
sets S and T ’ if the following three conditions hold: (1) {x, y} ∈ R implies either
[x ∈ S \ T and y ∈ T \ S] or [x ∈ T \ S and y ∈ S \ T ], (2)

⋃
R = S4T , and (3) if

{x, y}, {x′, y′} ∈ R are distinct sets, then they are disjoint.

Claim: If a ∈ A and Ca is finite, then for every a′ ∈ A, a ∼ a′ if and only if
|Ca| = |Ca′ |.

Proof. It is evident that if a, a′ ∈ A and and Ca is finite, then for any bases Ba
and Ba′ of Ca and Ca′ , respectively, the existence of a bijection between Ba and Ba′
implies |Ca| = |Ca′ |. Thus, a ∼ a′ implies |Ca| = |Ca′ |.

Conversely, if |Ca| = |Ca′ | and is finite, then let Ba and Ba′ be any two bases for Ca
and Ca′ , respectively. As these sets are finite and of the same cardinality, regardless
of their intersection there is a set W ⊆ [C∗a ∪ C∗a′ ]2 of unordered pairs ‘coding a
bijection’ as described above. But, by Proposition 3.3, since all three sets are finite
there are elements u, v, w ∈ M such that R1

u(M) ∩ C∗a = Ba, R1
v(M) ∩ C∗a′ = Ba′ ,

and R2
w(M) = W , so a ∼ a′. �
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Despite the fact that ∼ is well-behaved whenever Ca is finite, it need not be an
equivalence relation on all of A. It is visibly symmetric on A, but since we have no
control over the coding of infinite sets, it need not be either reflexive or transitive
on all of A. To remedy this, let

A′ = {a ∈ A : a ∼ a ∧ ∀a′, a′′ ∈ A[(a ∼ a′ ∧ a ∼ a′′)→ (a′ ∼ a′′)]}
Clearly, A′ is a definable subset of Mn and ∼ is an equivalence relation on A′.
Let

Ω = A′/ ∼
For each k ∈ ω, let Dk = ⊕i<k(B/A) be the free join of k copies of B over A.

Each Dk ∈ K+
r , so since M |= θ(∅, Dk,m), there is ak ∈ A such that |Ca| = k.

By the Claim, ak ∈ A′ as well, so define ηk = ak/ ∼. Again, by the Claim, this is
well-defined. That is, for any k, ηk = a/ ∼ for any a ∈ A′ such that |Ca| = k.

To define ≤ on Ω, by analogy with coding bijections above, say that a set R ⊆
[S ∪T ]2 codes an injection from S into T if (1) {x, y} ∈ R implies either [x ∈ S \T
and y ∈ T \ S] or [x ∈ T \ S and y ∈ S \ T ], (2) (S \ T ) ⊆

⋃
R, and (3) if

{x, y}, {x′, y′} ∈ R are distinct sets, then they are disjoint.
Then, for a,a′ ∈ Ω, define a ≤ a′ if and only if there exist a ∈ a, a′ ∈ a′ and

there exist u, v, w such that R1
u(M) ∩ C∗a is a basis for Ca, R1

v(M) ∩ C∗a′ is a basis
for C∗a′ , and R2

w(M) codes an injection between R1
u(M) ∩ C∗a and R1

v(M) ∩ C∗a′ .
It is not at all clear that ≤ defines a partial order on all of Ω, but this is not

relevant. It is clear that for k, ` ∈ ω, ηk ≤ η` if and only if k ≤ ` and that ηk ≤ a/ ∼
for any a ∈ A′ such that |Ca| ≥ k.

To define addition and multiplication on Ω requires one additional idea. Call a
triple {a,a′,a′′} ⊆ Ω mutually separable if there exist a ∈ a, a′ ∈ a′, a′′ ∈ a′′ with
pairwise disjoint bases Ba,Ba′ ,Ba′′ for Ca, Ca′ , Ca′′ , respectively.

Note that for any j, k, ` ∈ ω, the graph Dj,k,` := Dj ⊕∅ Dk ⊕∅ D` is in K+
r ,

so since M |= θ(∅, Dj,k,`,m), there exist aj , ak, a` ∈ Mn such that C∗aj , C
∗
ak
, C∗a`

are pairwise disjoint. Thus, any triple {ηj , ηk, η`} of ‘standard’ elements from Ω is
mutually separable.

Now define addition on Ω by a + a′ = a′′ if and only if EITHER they are
mutually separable and there exist a ∈ a, a′ ∈ a′, a′′ ∈ a′′ and disjoint bases
Ba,Ba′ ,Ba′′ of Ca, Ca′ , Ca′′ and there exist u1, u2, u3, w such that R1

u1
(M)∩C∗a = Ba,

R1
u2

(M)∩C∗a′ = Ba′ , R1
u3

(M)∩C∗a′′ = Ba′′ and R2
w codes a bijection between Ba∪Ba′

and Ba′′ OR either they are not mutually separable or such u1, u2, u3, w do not exist
and a′′ = a.

From the above, it is clear that for any k, ` ∈ ω, the first clause holds in evaluating
ηk + η`, and it is easily checked that ηk + η` = ηk+`.

The definition of multiplication on Ω is almost identical. The only change is
that R3

w codes a bijection between unordered pairs from Ba∪Ba′ (one element from
each set) and Ba′′ . Again, this function is well behaved on the ‘standard part’ i.e.,
ηk · η` = ηk` for all k, ` ∈ ω.

Thus, the structure (Ω,+, ·,≤, ηk)k∈ω |= R. �

Recall that a consistent theory T is essentially undecidable if every consistent
extension of T is undecidable.

Corollary 3.6. Σ+
r is essentially undecidable.
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Proof. It is shown in Part II, Theorem 9 of [8] that R is essentially undecidable.
Tarski shows that essential undecidability is transferred by interpretations in Part
I, Theorem 7. �

Remark 3.7. It is worth noting that while the interpreted model satisfies Robin-
son’s Q when M is the generic, this is not generally true. In particular, for the
ultraproducts

∏
UMαn

with {αn } a sequence of decreasing irrationals converging
to r and Mαn

the Shelah-Spencer graph of weight αn, there is a sentence σ which
says that there is some copy of A which has the maximal possible number of copies
of B embedded over it. This sentence is true in the ultraproduct as well, and the
order type of the interpreted (ω,≤) has a copy of ω∗ (ω reversed) as a tail.

Finally, we conclude this section by showing that Σ+
r has the maximal number

of completions.

Corollary 3.8. Σ+
r has 2ℵ0 completions.

Proof. As any finite extension of Σ+
r is recursively axiomatizable, it cannot be

complete. Using this, we define a tree {Tη : η ∈ <ω2} of consistent, finite extensions
of Σ+

r , with Tη ⊆ Tν whenever ηC ν and Tηa0 ∪Tηa1 inconsistent for each η. Each
of the branches extends to a complete extension. �

4. Going up, coming down, and general ultraproducts

Recall that for any α, K+
α ⊆ Kα and A 4α B implies A ≤α B, with equality

holding whenever α is irrational. Furthermore, it follows immediately from the
definition of the dimension functions that for all α < β, Kβ ⊆ K+

α and A ≤β B
implies A 4α B for all finite graphs A,B.

4.1. Increasing sequences.

Lemma 4.1. Let α∗ be given. Then

(1) If A 6∈ Kα∗ then there is ε > 0 such that A 6∈ K+
α for all α ∈ (α∗ − ε, α∗)

(2) If A,B ∈ Kα∗ and A ≤α∗ B, then there is ε > 0 such that for any α ∈
(α∗ − ε, α∗), A,B ∈ Kα and A ≤α B.

Theorem 4.2. Assume that {αn} is a strictly increasing sequence from (0, 1) that
converges to some α∗ ∈ (0, 1]. For each n ∈ ω, let Nn be elementarily equivalent
to either Mαn

or M+
αn

and let U be any non-principal ultrafilter on ω. Then the
ultraproduct ΠUNn is elementarily equivalent to Mα∗ . In particular, its theory is
decidable, Π2-axiomatized by Sα∗ and is stable. The theory is ℵ0-stable if α∗ is
rational, but strictly stable if α∗ is irrational.

Proof. In light of Theorems 2.7 and 2.8 we need only show that ΠUNn |= Sα∗ . For
each m, let σ(m) be the universal sentence in Sα∗ prescribing the substructures of
size m. Since up to isomorphism there are only finitely many graphs of size m,
and since each finite graph has only finitely many subgraphs, Lemma 4.1(1) implies
that there is an ε > 0 such that Nn |= σ(m) whenever αn ∈ (α∗ − ε, α∗). Thus,
Nn |= σ(m) for cofinitely many n, so ΠUNn |= σ(m) by  Loś’s theorem since U is
non-principal.

The justification that ΠUNn |= ψ(A,B) for each A ≤α∗ B is identical, using
Lemma 4.1(2). �
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4.2. Decreasing sequences. In this subsection we consider decreasing sequences
{αn} from (0, 1). We first note a special case. What distinguishes it from the other
cases is the lack of 0-extensions, minimal or otherwise.

Remark 4.3. A special case occurs when α∗ = 0. Note that K+
0 = K0 is the class

of all finite graphs, and for any graphs A,B, A ≤0 B if and only if A 40 B if and
only if A ⊆ B. Thus, the generic M0 of (K0,≤0) = K+

0 ,40) is the Fräısse limit
of the class of all finite graphs and is usually referred to as the ‘Random Graph.’
Its theory is decidable, being axiomatized by the set of ∀∃ axioms asserting that
for any two finite, disjoint subsets F and G, there exists an element connected to
every point in F , and to no point of G. As well, the theory of the Random Graph is
ω-categorical but unstable, being the paradigm of a theory with the Independence
Property.

Theorem 4.4. Assume that {αn} is a strictly decreasing sequence from (0, 1) that
converges to some α∗. For each n ∈ ω, let Nn be elementarily equivalent to either
Mαn

or M+
αn

and let U be any non-principal ultrafilter on ω. Then the ultraproduct
ΠUNn |= Σ∗α∗ satisfies one of the following three conditions, depending on α∗:

• If α∗ is irrational, then its theory is decidable, ∀∃-axiomatizable, and strictly
stable.
• If α∗ is rational and positive, then ΠUNn interprets Robinson’s R, its theory

is unstable, and some subtheory is essentially undecidable.
• If α∗ = 0, then the theory of the ultraproduct is equivalent to the theory

of the Random Graph, which is decidable, ∀∃-axiomatizable, ω-categorical,
and unstable.

Proof. We begin by showing that ΠUNn |= Σ∗α∗ . Clearly, for each m and σ(m) ∈
Σ+
α∗ , every Nn |= σ(m), so ΠUNn |= σ(m) as well. As θ(A,B,m) implies ψ(A,B),

it now suffices to prove that ΠUNn |= θ(A,B,m) for all A,B ∈ K+
α∗ satisfying

A 4α∗ B. So fix A,B ∈ K+
α∗ such that A 4α∗ B. Arguing as in Lemma 4.1 with

the inequalities reversed, there is an ε > 0 such that A,B ∈ Kα and A 4αn
B

for all α ∈ (α∗, α∗ + ε). Furthermore, since there are only finitely many graphs
C ⊇ B satisfying |C \ B| ≤ m, by shrinking ε we may additionally assume that
B 4α∗ C ⇔ B 4α C for each of these C’s and for every α ∈ (α∗, α∗ + ε). Since
each Nn |= θ(A,B,m) whenever A 4αn

B, it follows that Nn |= θ(A,B,m) for
cofinitely many n ∈ ω. Thus, ΠUNn |= θ(A,B,m) since U is non-principal.

Now that Th(ΠUNn) extends Σ+
α∗ , the itemized cases follow from Theorem 2.7,

Theorem 3.5, and Remark 4.3, respectively. �

4.3. General ultraproducts. We extend our results to arbitrary ω-sequences
{αn} and arbitrary untrafilters U on ω.

Definition 4.5. Suppose {αn} is an ω-sequence of real numbers from (0, 1), U is
an ultrafilter on ω, and α∗ ∈ [0, 1]. We say that

• {αn} U-converges to α∗ if {n ∈ ω : |αn − α∗| < ε} ∈ U for every ε > 0;
• {αn} U-converges to α∗ from below if {n ∈ ω : αn ∈ (α∗ − ε, α∗)} ∈ U for

every ε > 0;
• {αn} U-converges to α∗ from above if {n ∈ ω : αn ∈ (α∗, α∗ + ε)} ∈ U for

every ε > 0; and
• {αn} U-concentrates on α∗ if {n ∈ ω : αn = α∗} ∈ U .
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Lemma 4.6. Let {αn} be any ω-sequence of real numbers from (0, 1) and let U
be any ultrafilter on ω. Then {αn} U-converges to a unique real number α∗ ∈
[0, 1]. Moreover, the U-convergence is either from above, from below, or {αn} U-
concentrates on α∗, and these possibilities are mutually exclusive.

Proof. For each k ≥ 1 and i < 2k, let Qi denote the half-open interval [i/2k, (i +
1)/2k) and let Qi denote its closure. For each k ≥ 1, as {Qi : i < 2k} is a finite
partition of [0, 1), there is a unique i(k) such that {n ∈ ω : αn ∈ Qi(k)} ∈ U .
Moreover, for each k, Qi(k+1) ⊆ Qi(k) and the diameters are decreasing to zero, so

there is a unique real number α∗ ∈
⋂
k≥1Qi(k). The trichotomy follows immediately,

since the three sets {n ∈ ω : αn < α∗}, {n ∈ ω : αn = α∗}, and {n ∈ ω : αn > α∗}
obviously partition ω. �

Remark 4.7. Clearly, if the ultrafilter is non-principal, and either {αn} U-converges
to 1 or the sequence {αn} is strictly increasing, then the U-convergence is from
below. By inspecting the proof of Theorem 4.2, it is easily checked that if {αn} U-
converges to α∗ from below, then the ultraproduct ΠUNn is elementarily equivalent
to Mα∗ .

Remark 4.8. Dually, if U is non-principal and either {αn} U-converges to 0 or the
sequence {αn} is strictly decreasing, then the U-convergence is from above. As
well, the proof of Theorem 4.4 holds whenever{αn} U-converges to α∗ from above.

We summarize our results with the Theorem below.

Theorem 4.9. Let {αn} be any sequence of reals in (0, 1), for each n ∈ ω let Nn
be elementarily equivalent to either Mαn or M+

αn
, and let U be any ultrafilter on ω.

Then exactly one of the four possibilities hold:

(1) For some rational α∗ ∈ (0, 1], ΠUNn ≡ Mα∗ . Its theory is decidable, Π2-
axiomatized by Sα∗ , and ℵ0-stable.

(2) For some irrational α∗ ∈ (0, 1), ΠUNn ≡ Mα∗ . Its theory is decidable,
Π2-axiomatized by Sα∗ , and stable, unsuperstable.

(3) For some rational α∗ ∈ (0, 1), ΠUNn |= Σ+
α∗ and interprets Robinson’s R.

Its theory is unstable and contains an essentially undecidable subtheory.
(4) ΠUNn is elementarily equivalent to the classical ‘Random graph’.

Proof. Let {αn}, {Nn}, and U be given. Let α∗ ∈ [0, 1] be the unique value to which
{αn} U-converges. If {αn} U-converges to α∗ from below, then by Remark 4.7
ΠUNn is elementarily equivalent to Mα∗ , and we are in either Case 1 or Case 2,
depending on whether α∗ is rational or irrational.

If {αn} U-converges to α∗ from above and α∗ 6= 0, then Remark 4.8 places us
into Case 2 or Case 3, again depending on the rationality of α∗.

Next, suppose that {αn} U-concentrates on α∗. If α∗ is irrational, then we are
visibly in Case 2. On the other hand, if α∗ is rational, then we are in either Case 2 or
Case 3, depending on which of the sets {n ∈ ω : Nn ≡Mα∗}, {n ∈ ω : Nn ≡M+

α∗}
is in the ultrafilter.

Finally, if α∗ = 0, then the U-convergence must be from above and Remark 4.3
applies, placing us in Case 4. �

We close by remarking that this Theorem demonstrates that almost no property,
positive or negative, is preserved under ultraproducts. For example, it may be
that each Nn has an ω-stable, decidable theory, yet the ultraproduct interprets
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Robinson’s R. Conversely, we may have models Nn, each interpreting Robinson’s
R, for which the theory of the ultraproduct is ω-stable and decidable.
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