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Abstract. We show that if a countable structure M in a finite relational
language is not cellular, then there is an age-preserving N ⊇ M such
that 2ℵ0 many structures are bi-embeddable with N . The proof proceeds
by a case division based on mutual algebraicity.

1. Introduction

The model-theoretic condition of cellularity has appeared several times
as a dividing line in the complexity of universal theories, including when
counting the number of countable models [14], counting the number of finite
models as a function of size [13], and counting the number of non-isomorphic
substructures of countable models [11]. In this paper, we present a general
approach to proving results about cellularity via another model-theoretic
condition, mutual algebraicity. The approach is to first prove that the
non-mutually algebraic case is wild, likely using the Ryll-Nardzewski-type
characterization of mutual algebraicity from [12]. In a companion paper
[3], we characterize the mutually algebraic non-cellular case. As mutually
algebraic structures admit a nice structural decomposition, it is relatively
quick to prove the mutually algebraic non-cellular case is still wild. This
approach was already largely present in [13], and we apply it here to the
question of counting siblings.

We call two (not necessarily elementarily) bi-embeddable structures siblings
(f : M ↪→ N is an embedding if R(x1, . . . , xn) ⇐⇒ R(f(x1), . . . , f(xn)) for
every atomic relation R). Given a countable relational structure M , our goal
is to count the number of siblings of M , up to isomorphism. Thomassé has
conjectured the following, counting M as a sibling of itself.

Conjecture 1 (Thomassé, [16]). Given a countable structure M in a count-
able relational language, M has either 1, ℵ0, or 2ℵ0 siblings, up to isomor-
phism.

This conjecture has been proven in the case of linear orders [8], the
gap from 1 to ℵ0 proven for ℵ0-categorical structures by making use of
the monomorphic decomposition [7], and the gap from 1 to ℵ0 proven for
cographs [5]. The gap from 1 to ℵ0 has also been conjectured in the case of
graphs, connected graphs where the siblings must also be connected [1], and
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trees where the siblings must also be trees (as opposed to forests) [2], and
some partial results obtained in these cases.

If two structures are siblings, they must have the same finite substructures,
and so satisfy the same universal theory. Thus, we may coarsen Thomassé’s
conjecture to considering the maximum number of siblings of any model of a
given universal theory, which may be viewed as a measure of complexity of
that theory. Indeed, for a model to have many siblings, we must produce
non-isomorphic structures that look somewhat alike (the similarity required
of siblings may be increased by requiring elementary bi-embeddability, as
in [4]). Complex theories will allow their models to be nuanced enough to
admit many siblings. Uncomplicated theories will not allow for such nuance,
and so whenever models look alike, they will be the same. (For example, the
theory of n disjoint unary predicates, where models are isomorphic once the
cardinalities of the predicates match.) The complexity gaps of Thomassé’s
conjecture then call to mind model-theoretic dividing lines.

However, we note that it is possible for individual structures to be very
complicated, yet have few siblings. For example, ω with successor has only
itself as a sibling. Thus the same is true of any expansion, in particular the
expansion by the graphs of addition and multiplication. So it is difficult to
see how model theory will inform the full conjecture.

Our main theorem confirms the weakening of Thomassé’s conjecture to
the level of universal theories in a finite relational language.

Theorem 1.1 (Theorem 7.11). Let T be a universal theory in a finite
relational language. Then one of the following holds.

(1) T is finitely partitioned. Every model of T has one sibling.
(2) T is cellular. The finitely partitioned models of T have one sibling

and the non-finitely partitioned models have ℵ0 siblings.
(3) T is not cellular. For every non-cellular M |= T , there is some

N ⊇M such that N |= T and N has 2ℵ0 siblings. Furthermore, if T
is mutually algebraic, we may take N �M .

Theorem 1.1 does have implications at the level of structures, confirming
some conjectures of [7].

Corollary 1.2 (Corollary 7.12). Let M be a countable model in a finite
relational language that is universal for its age. Then one of the following
holds.

(1) M is finitely partitioned, and has one sibling.
(2) M is cellular but not finitely partitioned, and has ℵ0 siblings.
(3) M is not cellular, and has 2ℵ0 siblings.

This also implies the result for ω-categorical M in a finite relational
language, since then we may pass to its model companion. Example 6 shows
Corollary 1.2 does not hold for infinite relational languages with finite profile.

We close with some comments connecting our results to previous work on
cellularity. First, we note that Theorem 1.1 is a refinement of the main result
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of [14] that non-cellular universal theories have 2ℵ0 non-isomorphic models.
Second, Corollary 1.2 may be seen as a dual to the main result of [11] that
an atomically stable non-cellular countable structure has 2ℵ0 non-isomorphic
substructures. When M is universal for its age, as in Corollary 1.2, siblings
are equivalent to age-preserving extensions, and we again see cellularity is
the dividing line between ℵ0 and 2ℵ0 .

1.1. Proof sketch. The primary intuition behind the proof of the main
theorem is that if a universal theory T is non-cellular, then either it is
unstable and so has a model encoding (Q, <), or has a model that in some
sense encodes a partition with infinitely many infinite parts. We present
three examples corresponding to the three cases of our proof, and explain
how to obtain 2ℵ0 many siblings in each.

(1) Let M = (Q,≤). Then any countable non-scattered order is a sibling
of M , and there are 2ℵ0 many.

(2) Let M be an equivalence relation with infinitely many infinite classes.
Then we may pass to an elementary extension M∗ �M containing
infinitely many new infinite classes {Aq : q ∈ Q }. For each injective
f : Q→ ω, let Mf be obtained by cutting down each Aq to size f(q).
Then each Mf is a sibling of M , and they are pairwise non-isomorphic,
as they have distinct sizes of finite classes.

(3) Let M = (ω, s), where s is the successor relation. We first pass to an
elementary extension M ′ �M containing infinitely many Z-chains.
Then, as in case (2), we may pass to a further elementary extension
M∗ � M ′ containing infinitely many new Z-chains {Aq : q ∈ Q }.
For each injective f : Q→ ω, we let Mf be obtained by cutting down
each Aq to a connected piece of size f(q).

Our proof follows these three examples. The bulk of the work is in
generalizing Case 2 to the setting of a non-mutually algebraic M . The role
played by equivalence classes is generalized to that of k-cliques in §4, while
§3 guarantees that if we cannot add such k-cliques to M , then we may find
many siblings as in Case 1. Otherwise, for M non-mutually algebraic, we
may generalize the proof of Case 2 by adding infinitely many k-cliques to M ,
which is done in §5-6. Finally, for M mutually algebraic but non-cellular, we
generalize Case 3 in §7.

The authors are grateful to the anonymous referee for their careful reading
and pointing out inaccuracies in a preliminary version of this paper.

2. Conventions and background

The following conventions will be in effect throughout this paper, unless
otherwise noted.

M is a countable structure in a finite relational language L.

Types are quantifier-free, and indiscernibility is with respect to
quantifier-free formulas.
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We now briefly cover the definitions and results from elsewhere that we
will need.

Definition 2.1. A structure M is finitely partitioned if it admits a finite
partition {C1, . . . , Cn } such that ΠiSym(Ci) ⊂ Aut(M).

Definition 2.2. A structure M is cellular if, for some n and integers
(k1, . . . , kn), it admits a partition K t { c̄i,j | i ∈ [n], j ∈ ω } satisfying the
following.

(1) K is finite, and each c̄i,j = (c1
i,j , . . . , c

ki
i,j) has length ki.

(2) For every i ∈ [n] and σ ∈ S∞, there is a σ∗i ∈ Aut(M) mapping each
c̄i,j onto c̄i,σ(j) by sending c`i,j to c`i,σ(j) for 1 ≤ ` ≤ ki, and fixing

M\
⋃
j∈ω c̄i,j pointwise.

We call such a partition a cellular partition.

Example 1. Let M be a graph consisting of infinitely many disjoint edges
and an infinite clique. Then M is cellular – we may take K = ∅, n = 2, let
{ c̄0,j : j ∈ ω } enumerate the disjoint edges, and { c1,j : j ∈ ω } enumerate
the clique.

Note M is finitely partitioned if and only if M is cellular as witnessed by
a partition with each ki = 1. The following definitions are from [10], which
builds on results from [9].

Definition 2.3. Given a structure M and n ≥ 1, a set S ⊆Mn is mutually
algebraic if there is some K ∈ ω such that |{ā ∈ S : m ∈ ā}| ≤ K for
every m ∈ M . Let LM be L expanded by constant symbols for every
element of M , and MM the natural expansion of M to LM . An LM -formula
φ(x1, . . . , xn) is mutually algebraic if it defines a mutually algebraic subset
of Mn. We then letMA∗(M) be the smallest set of LM -formulas containing
the mutually algebraics, closed under adjunction of dummy variables and
boolean combinations.

Finally, we say M is mutually algebraic if every LM -formula is equivalent
to a formula in MA∗(M).

Note that every unary relation is mutually algebraic. Less obviously,
cellular structures are mutually algebraic.

Lemma 2.4. Let M be mutually algebraic and N ⊂M a substructure. Then
N is mutually algebraic.

Proof. Let (M,N) be the expansion of M formed by adding a unary predicate
U interpreted as N . Let N ind denote the expansion of N by relations PD
naming the trace D∩Nn of every (M,N)-definable (with parameters) subset
D ⊆Mn, for all n. As the set N is definable in (M,N), it is easily checked
that N ind admits elimination of quantifiers. Moreover, every parameter-
definable set of N ind is 0-definable in N ind, and is definable in (M,N).

Claim. N ind is mutually algebraic.
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Proof of Claim. We show that every N ind-definable subset B ⊆ Nn is in
MA∗(N ind). Since mutual algebraicity is preserved under unary expan-
sions by Theorem 3.3 of [10], (M,N) is mutually algebraic, and so B is in
MA∗((M,N)), as witnessed by a boolean combination of sets {Y1, . . . , Ym },
each realizing an adjunction of a mutually algebraic formula by dummy
variables. As the same is true for each Yi ∩Nn, B ∈MA∗(N ind). ♦

It is easily checked that the L-structure N is a reduct of N ind, hence N is
mutually algebraic by Corollary 7.4 of [12]. �

In addition to mutual algebraicity, the properties of being finitely parti-
tioned and cellular are preserved under passing to a substructure. Thus, they
are properties of a universal theory, and so we will say a universal theory T
has one of these properties if all of its countable models do.

We record one additional characterization of mutual algebraicity.

Theorem 2.5. [12, Theorem 2.1] M is mutually algebraic if and only if
every atomic L-formula is Th(MM )-equivalent to a boolean combination of
quantifier-free mutually algebraic LM -formulas.

Example 2. Consider a structure (M,E) where E is an equivalence relation
with n classes, each class infinite. Then the relation E is not mutually
algebraic. However, using the constants m1, . . . ,mn to name one element
from each class, we have E(x, y) ⇐⇒

∨
i(E(x,mi) ∧ E(y,mi)), which is

a boolean combination of quantifier-free mutually algebraic LM -formulas.
Thus M is mutually algebraic.

Definition 2.6. Given a set A, let QFk(A) be the set of quantifier-free
formulas over A with k variables.

Given a structure M , c̄ ∈ Mk, and A ⊂ M , the type of c̄ over A is
tp(c̄/A) = { θ(x̄) ∈ QFk(A) : M | = θ(c̄) }.

Given a structure M , a k-type over M is some p(x̄) ⊂ QFk(M) such
that there is some elementary extension N � M and n̄ ∈ Nk such that
p(x̄) = tp(n̄/M).

Definition 2.7. Given a structure M and a k-type p over M , we say p
supports an infinite array if there is some N � M and a set of pairwise
disjoint k-tuples { n̄i ∈ Nk : i ∈ ω } such that n̄i |= p, for every i.

We let Suppk(M) denote the set of k-types over M that support infinite
arrays.

We say p(x̄) is coordinate-wise non-algebraic if (xi 6= b) ∈ p for every
xi ∈ x̄ and every b ∈M .

Lemma 2.8. Let M be any structure, and p(x̄) a type over M . Then
p ∈ Suppk(M) if and only if p(x̄) is coordinate-wise non-algebraic.

Proof. If (xi = b) ∈ p for some xi and some b ∈M , then any two realizations
of p have non-empty intersection, so p does not support an infinite array (or
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an array of length 2, for that matter). Conversely, assume p is coordinate-
wise non-algebraic, but p does not support an infinite array. By compactness,
there is some n and some θ(x̄) ∈ p such that in M , there do not exist n
pairwise disjoint realizations of θ. Among all such, choose θ so that n is
minimized, and choose { b̄i : i < n } from M , pairwise disjoint with M |= θ(b̄i)
for each i. Choose M∗ �M and ā from M∗ realizing p. As p is coordinate-
wise non-algebraic, ā is disjoint from M , hence disjoint from each b̄i. Thus
{ ā } ∪ { b̄i : i < n } gives (n+ 1) pairwise disjoint realizations of θ(x̄), which
is impossible since M∗ �M . �

Theorem 2.9. If M is not mutually algebraic, then there is some M ′ �M
and some k ∈ ω such that Suppk(M

′) is infinite.

Proof. By [12, Theorem 6.1], there is some countable M∗ ≡M and some k
such that Suppk(M∗) is infinite. Let M ′ elementarily embed M and M∗. By
compactness, every p ∈ Suppk(M

∗) extends to some p′ ∈ Suppk(M
′). �

Definition 2.10. Fix a structure M , let S = (b̄i ∈ Mk : i ∈ (I,<)) be
a sequence of k-tuples, and let A ⊂ M . S is order indiscernible over
A if tp(b̄i1 , . . . , b̄in/A) = tp(b̄j1 , . . . , b̄jn/A) whenever i1 < · · · < in and
j1 < · · · < jn (where, by our convention, tp is understood to mean quantifier-
free type).
S is totally indiscernible over A if tp(b̄i1 , . . . , b̄in/A) = tp(b̄j1 , . . . , b̄jn/A)

whenever i1, . . . , in are pairwise distinct, as are j1, . . . jn.
S is strictly order indiscernible over A if it is order indiscernible over A

but not totally indiscernible over A.

Definition 2.11. A countable structure M is universal for its age if every
other countable structure with the same age embeds into M . Equivalently,
M is countable universal for its universal theory.

3. Strictly order indiscernible arrays

As we are aiming to prove that cellularity is the dividing line between hav-
ing a model with ℵ0 and 2ℵ0 siblings, we expect non-stability, as manifested
by an infinite strictly order-indiscernible sequence of k-tuples, to provide a
model with 2ℵ0 siblings. We prove this in the case of infinite arrays, but first
we need a definition and easy lemma.

Definition 3.1. For M non-mutually algebraic, M is array-minimal of
index k if Suppk(M) is infinite and there does not exist a k′ < k and an
age-preserving N ⊇M for which Suppk′(N) is infinite.

Example 3. Consider the structure M = (Q × { 0, 1 } ,≺, E), where E
is a binary relation such that (q, i)E(r, j) iff q = r and i 6= j, and ≺ is
a quaternary relation encoding the usual ≤ relation between pairs of E-
connected points. Then there is only 1 coordinate-wise non-algebraic 1-type
over M , namely the type of an isolated point. The same will be true for any
age-preserving N ⊇M . However, there are infinitely many coordinate-wise
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non-algebraic 2-types over M – into any cut of M , we may insert an E-related
pair of points. Thus M is array-minimal of index 2.

Lemma 3.2. If M is not mutually algebraic, then for some k ≥ 1, there
is an age-preserving M ′ ⊇ M that is array-minimal of index k. Moreover,
for every elementary extension M∗ �M ′ and for any substructure N with
M ′ ⊆ N ⊆M∗, N is also array-minimal of index k.

Proof. As M is not mutually algebraic, by Theorem 2.9 there is some age-
preserving N ⊇M and some ` ∈ ω such that Supp`(N) is infinite. Among
all age-preserving extensions of M , there is one with the least k such the
extension has infinitely many k-types that support infinite arrays, and choose
that extension to be M ′.

For the moreover clause, choose any M ′ ⊆ N ⊆M∗ with M∗ �M ′. Every
p ∈ Suppk(M ′) has an extension p∗ ∈ Suppk(M∗). As the restriction of each
of these types p∗ to a type over N also supports an infinite array, N is also
array-minimal of index k. �

Proposition 3.3. Suppose M is not mutually algebraic, M is array-minimal
of index k, and that some p ∈ Suppk(M) supports an infinite array { āi : i ∈ ω }
that is strictly order indiscernible over M . Then there is an age preserving
N ⊇M with 2ℵ0 siblings.

Proof. From our assumption on p and compactness, choose an elementary
extension M∗ � M containing a strictly order-indiscernible array A =
{ āj : j ∈ Q } of realizations of p. Let N be the substructure of M∗ with
universe M ∪ A, and let N∗ = M ∪ { āj : j ≤ 0 } ∪ { āj : j ≥ 1 }. Choose
a family F = { Jα : α ∈ 2ω } of subsets of (0, 1) ∩ Q such that the ordered
structures (Jα,≤) are pairwise non-isomorphic and each embed (Q,≤). For
each α, let Nα ⊆ N have universe N∗∪{ āj : j ∈ Jα }. As (Jα,≤) and (Jβ,≤)
both embed (Q,≤), they are bi-embeddable, and these lift to bi-embeddings
of Nα and Nβ fixing N∗ pointwise.

It is true that some of the structures Nα, Nβ may be isomorphic, but we

will find a subfamily of size 2ℵ0 that are pairwise non-isomorphic, which
finishes our argument. Our method will be to prove that for any given
Nα, {Nβ : Nβ

∼= Nα } is countable, which suffices. In particular, we will
fix a uniform finite set F ⊂ N∗ and prove that when α 6= β, there is no
isomorphism h : Nβ → Nα that fixes F pointwise. Then we cannot have
h : Nβ → Nα and h′ : Nβ′ → Nα with h(F ) = h′(F ) pointwise, since h−1 ◦ h′
would fix F . As each Nα is countable, there are only countably many possible
images of F under an isomorphism h : Nβ → Nα, hence {β : Nβ

∼= Nα } is
countable, as required.

Constructing F and proving its suitability will take the rest of the section.
�

To begin, we have the following definition that involves permutations of
k-tuples. For a given k-tuple āq from N and a given π ∈ Sym(k), let π(āq)
be the permutation of ā induced by π.
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Definition 3.4. Working in N , a permutation π ∈ Sym(k) is permissible
if for some (equivalently for all, by order indiscernibility) q ∈ (0, 1) ∩ Q,
tp(π(āq)/(N \ āq)) = tp(āq/(N \ āq)).

Equivalently, π is permissible if and only if the map sending āq to π(āq),
and otherwise restricting to the identity, is an automorphism of N .

The following Lemma is easy because Sym(k) is finite.

Lemma 3.5. There is a finite set G ⊆ N∗ such that for any π ∈ Sym(k), π
is permissible if and only if for some (equivalently, for every) q ∈ (0, 1) ∩Q,
tp(π(āq)/G) = tp(āq/G).

Proof. Fix any q ∈ (0, 1) ∩Q. For each σ ∈ Sym(k) that is not permissible,
choose a finite subset G0

σ ⊆ N \ { āq } such that tp(σ(āq)/G
0
σ) 6= tp(āq/G

0
σ).

By order indiscernibility, we may replace G0
σ by a ‘conjugate’ Gσ ⊆ N∗

so that tp(σ(āq)/Gσ) 6= tp(āq/Gσ). Then, by order indiscernibility, G :=⋃
{Gσ : σ ∈ Sym(k), σ not permissible } works not only for q but for any

q′ ∈ (0, 1) ∩Q. �

Next, we pinpoint a failure of total indiscernibility overM . Since { āj : j ∈ Q }
is strictly order indiscernible over M there is an integer ` ≥ 2, a permutation
σ ∈ Sym(`) and a formula θ(x̄1, . . . , x̄`, m̄) (with m̄ from M and lg(x̄i) = k
for each i) such that

N |= θ(ā1, . . . , ā`, m̄) ∧ ¬θ(āσ(1), . . . , āσ(`), m̄)

As σ is a product of transpositions, this implies that there is some i, 1 ≤ i < `
such that

N |= θ(ā1, . . . , āi−1, āi, āi+1, . . . , ā`, m̄) ∧ ¬θ(ā1, . . . , āi−1, āi+1, āi, . . . , ā`, m̄)

Translating by i and adding dummy variables as needed, there is some r ≥ 2
such that

N |= θ(ā−r, . . . , ā−1, ā0, ā1, . . . , ār, m̄) ∧ ¬θ(ā−r, . . . , ā−1, ā1, ā0, . . . , ār, m̄)

Let H be the parameters { ā−r, . . . , ā−1, ā2, . . . , ār, m̄ } ⊆ N∗ and let θ(x̄, ȳ)
be the H-definable formula mentioned above.

Take F := G ∪H ∪ { ā0, ā1 } to be our finite subset of N∗. Put γ(x̄) :=∧
tp(āq/F ) for any q ∈ (0, 1) ∩Q. Let

δ(x̄) := θ(x̄, ā1) ∧ ¬θ(x̄, ā0) ∧ (x̄ ∩ F = ∅) ∧ γ(x̄)

The following lemma characterizes when N |= δ(d̄) among all permutations
of āq.

Lemma 3.6. (1) For q, r ∈ [0, 1] ∩Q, N |= θ(āq, ār) if and only if q < r.
(2) For q ∈ Q and π ∈ Sym(k), N |= δ(π(āq)) if and only if q ∈ (0, 1)

and π is permissible.

Proof. (1) From above, this is true with q = 0, r = 1, so the general statement
follows by order indiscernibility.
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(2) Suppose N |= δ(π(āq)). We first argue that q ∈ (0, 1). Note that
q = 0, 1 are forbidden by γ(x̄). If q < 0, then as 〈q,−r . . . ,−1, 0, 2 . . . , r〉 has
the same order type as 〈q,−r, . . . ,−1, 1, 2, . . . , r〉, indiscernibility yields

N |= θ(π(āq), ā0)↔ θ(π(āq), ā1)

so N |= ¬δ(π(āq)). Arguing similarly, N |= ¬δ(π(āq)) when q > 1 as well.
Thus, q ∈ (0, 1). But now, as N |= γ(π(āq)) we have tp(π(āq)/G) = tp(āq/G),
so π is permissible by Lemma 3.5.

Conversely, suppose q ∈ (0, 1) and π is permissible. That N |= δ(āq)
follows from (1). As π is permissible, N |= δ(π(āq)) as well. �

We next show that N |= ¬δ(d̄) for any d̄ ∈ Nk that is not a permutation
(permissible or otherwise) of some āq. For this, we introduce the notion of a
hybrid, which will be an n-tuple for some n ≤ k that is not (a permutation of)
one of our “intended” tuples āq. In future sections, we will make analogous
definitions of “unintended” tuples and prove analogous lemmas to control
their behavior.

Definition 3.7. Any automorphism σ of (Q,≤) extends naturally to an
automorphism σ∗ ∈ Aut(N) that fixes M pointwise, and maps each āq to
āσ(q). We call these automorphisms of Aut(N) the standard automorphisms.

Definition 3.8. For any n ≤ k, d̄ ∈ Nn is a hybrid if no permutation of any
āq is a subsequence of d̄.

• A hybrid d̄ is from q1 < · · · < qt if d̄ ⊆ M ∪ āq1 ∪ · · · ∪ āqt , and
d̄ ∩ āqi 6= ∅ for every 1 ≤ i ≤ t.
• If d̄ is from q1 < · · · < qt and d̄′ is from r1 < · · · < rt, we say d̄ and
d̄′ are associated if σ∗(d̄) = d̄′ for some/any standard automorphism
σ∗ ∈ Aut(N) extending any automorphism σ ∈ Aut(Q,≤) with
σ(qi) = ri for each i.

The next lemma crucially uses that M is array-minimal of index k.

Lemma 3.9. Suppose b̄q is a proper subsequence of āq, b̄r is a proper
subsequence of ār and b̄q and b̄r are associated. Then tp(b̄q/(N \ (āq∪ ār))) =
tp(b̄r/(N \ (āq ∪ ār))).

Proof. Assume not. Clearly, q 6= r, so assume q < r. Choose a formula
φ(x̄, ē) with ē ⊆ N \ (āq ∪ ār) such that

N |= φ(b̄q, ē) ∧ ¬φ(b̄r, ē)

Choose a dense/codense subset D ⊆ Q and let N0 be the substructure of
N with universe M ∪ { āq : q ∈ (Q \D) }. Clearly, N0 is an age-preserving
extension of M , so we will obtain a contradiction to M being array-minimal
of index k by proving that tp(b̄q′/N0) 6= tp(b̄r′/N0) for all pairs q′ < r′ from
D, where b̄q′ is the subsequence of āq′ associated to both b̄q and b̄r and
similarly for b̄r′ . (That each of these types is coordinate-wise non-algebraic
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is immediate, since each b̄q′ is disjoint from N0. Thus, each of these support
an infinite array by Lemma 2.8.)

To see this, fix q′ < r′ from D, and let ē be from s1 < · · · < st. As D is
dense/codense in Q, there is some σ ∈ Aut(Q,≤) sending q 7→ q′, r 7→ r′, and
s1, . . . , st into (Q\D). Letting σ∗ ∈ Aut(N) be the corresponding standard
automorphism, we have

N |= φ(b̄q′ , σ
∗(ē)) ∧ ¬φ(b̄r′ , σ

∗(ē))

As σ∗(ē) ⊂ N0, we have tp(b̄q′/N0) 6= tp(b̄r′/N0), as required. �

Next, we discuss arbitrary hybrids. In the assumptions of the following
lemma, the fact that d̄, d̄′ are associated implies that the t is the same in
both places.

Lemma 3.10. For n ≤ k, suppose d̄, d̄′ ∈ Nn are associated hybrids with d̄
from q1 < · · · < qt and d̄′ from r1 < · · · < rt. Then tp(d̄/N0) = tp(d̄′/N0),
where N0 = N \ (āq1 ∪ . . . āqt ∪ ār1 · · · ∪ ārt).

Proof. This will follow easily from the following special case.

Claim. The statement holds if { q1 . . . , qt }, { r1, . . . , rt } are disjoint.

Proof of Claim. Under this additional assumption, we argue by induction
on t. First, if t = 0, then d̄ ⊆ M . As d̄′ is associated to d̄, d̄′ = d̄ so the
statement is trivially true.

Now assume that the statement is true for t − 1. Write d̄ := h̄b̄, where
h̄ is from q1 < · · · < qt−1 and b̄ is from qt. Let σ∗ ∈ Aut(N) be a standard
automorphism extending any automorphism σ ∈ Aut(Q,≤) extending the
map qi 7→ ri for each i. Let h̄′ := σ∗(h̄) and b̄′ := σ∗(b̄). As d̄ is a hybrid, we
have that b̄ is a proper subsequence of āqt (up to a permutation, which may
be ignored), and so b̄′ is also a proper subsequence of ārt , associated to b̄.

To see that tp(d̄/N0) = tp(d̄′/N0), choose any φ(x̄, ē) ∈ tp(d̄/N0). Thus
N |= φ(h̄, b̄, ē). By our assumption that { q1, . . . , qt } is disjoint from
{ r1, . . . , rt }, we have h̄ ⊆ N \(āqt∪ārt), and so N |= φ(h̄, b̄′, ē) by Lemma 3.9.
But now, as h̄ is a hybrid from q1 < · · · < qt−1 that is associated to h̄′, our
inductive hypothesis implies that N |= φ(h̄′, b̄′, ē). Thus, φ(x̄, ē) ∈ tp(d̄′/N0)
as needed. ♦

For the general case where { q1, . . . , qt } and { r1 . . . , rt } need not be
disjoint, choose any φ(x̄, ē) ∈ tp(d̄/N0). Choose s1 < · · · < st disjoint from
{ q1, . . . , qt }∪{ r1 . . . , rt } and such that ē is disjoint from ās1 ∪ · · · ∪ āst . Let
d̄′′ be the hybrid from s1 < · · · < st associated to both d̄ and d̄′. Because
of the disjointness, we can apply the claim to the pairs d̄, d̄′′ and d̄′, d̄′′ to
obtain

N |= φ(d̄, ē)↔ φ(d̄′′, ē)↔ φ(d̄′, ē)

Thus, φ(x̄, ē) ∈ tp(d̄′/N0) as required. �
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Finally, we can finish off our problem of identifying realizations of δ(x̄) in
Nk.

Corollary 3.11. For d̄ ∈ Nk, N |= δ(d̄) if and only if d̄ = π(āq) for some
q ∈ (0, 1) ∩Q and some permissible π ∈ Sym(k).

Proof. First, if d̄ is π(āq) for some q ∈ Q and π ∈ Sym(k), this is proved

in Lemma 3.6. So assume d̄ ∈ Nk is not a permutation of any āq, i.e. d̄ is
a hybrid. We argue that N |= ¬δ(d̄). Say d̄ is from q1 < · · · < qt. Choose
r1 < · · · < rt < 0 from Q, and let d̄′ be associated to d̄ from r1 < · · · < rt.
By order indiscernibility,

N |= θ(d̄′, ā0)↔ θ(d̄′, ā1)

In particular, N |= ¬δ(d̄′). From the definition of δ(x̄), we may assume
d̄ ∩ F = ∅, and so by Lemma 3.10 we also have

N |= δ(d̄)↔ δ(d̄′)

so N |= ¬δ(d̄) as claimed. �

The following lemma will finish the proof of Proposition 3.3.

Lemma 3.12. If f : Nα → Nβ is an isomorphism fixing F pointwise, then
(Jα,≤) ∼= (Jβ,≤), hence α = β.

Proof. We define a map f∗ : Jα → Jβ as follows. Given q ∈ Jα, note that
N |= δ(āq). Thus, N |= δ(f(āq)) as well. By Corollary 3.11 f(āq) = π(ās)
for some s ∈ (0, 1) and some permissible permutation π. As f(āq) ⊆ Nβ , we
must have s ∈ Jβ. Put f∗(q) := s. It is clear that f∗ : Jα → Jβ is bijective.

To see that f∗ is order-preserving, choose q < q′ from Jα. Write f(āq) as
π(ās) and write f(āq′) as π′(ās′). As both π, π′ are permissible, there is a
σ ∈ Aut(N) sending π(ās) 7→ ās, π

′(ās′) 7→ ās′ , and fixing everything else.
Then the composition g := σ ◦ f : Nα → Nβ is an isomorphism fixing F
pointwise sending āq 7→ ās, āq′ 7→ ās′ .

By Lemma 3.6(1), N |= θ(āq, āq′). As θ is quantifier-free, Nα |= θ(āq, āq′).
Since g is an isomorphism fixing F pointwise, Nβ |= θ(ās, ās′), and hence
N |= θ(ās, ās′). By Lemma 3.6(1) again, s < s′. That is, f∗(q) < f∗(q′). �

4. k-cliques

In this section, we introduce k-cliques, which will serve the function of
equivalence classes from Case 2 of §1.1.

Fix a finite relational L with maximal arity r and an ambient L-
structure M throughout this section.

For n ≥ r, call a quantifier-free L-formula φ(x1, . . . , xn) q.f.-complete
if φ(x1, . . . , xn) decides every atomic R(ȳ) for every permutation ȳ of a
subsequence of (x1, . . . , xn). As L is finite relational, there is a finite set Sn
of q.f.-complete φ(x1, . . . , xn) such that for every L-structure M and every
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c̄ ∈ Mn, tp(c̄) contains precisely one element of Sn. Fix such a set Sn for
every n ≥ r.

Definition 4.1. Fix k ≥ 1 and let M (k) := { ā ∈Mk : ai 6= aj for i 6= j }.
• A pair ā, b̄ ∈ M (k) is exchangeable, written ā ∼ b̄, if ā ∩ b̄ = ∅ and

tp(āb̄/(M \ (ā ∪ b̄))) = tp(b̄ā/(M \ (ā ∪ b̄))).
• A k-clique is a non-empty set A = { āi : i ∈ I } ⊆ M (k) such that
āi, āj are exchangeable whenever i 6= j.
• The size of A is simply its cardinality |A|.
• Given a k-clique A, we denote the set of all a ∈M such that a ∈ āi

for some āi ∈ A by
⋃
A. Because of the disjointness, |

⋃
A| = k · |A|.

Remark 4.2. Similar to Definition 3.4, for all ā, b̄ ∈M (k) with ā ∩ b̄ = ∅,
ā and b̄ are exchangeable if and only if the bijection swapping them is an
automorphism of M if and only if

M |= ∀ȳ[ȳ ∩ (ā ∪ b̄) = ∅ → φ(ā, b̄, ȳ)↔ φ(b̄, ā, ȳ)]

for every φ(x̄1, x̄2, ȳ) ∈ S2k+r with lg(ȳ) = r. As S2k+r is finite, it follows that

exchangeability is definable on M (k). However, unless k = 1 exchangeability
need not be transitive, due to the disjointness condition.

Definition 4.3. A set of disjoint k-tuples A = { āi : i ∈ I } ⊆M (k) is totally
indiscernible over its complement if it is totally indiscernible over M\

⋃
A.

Lemma 4.4. Let A ⊆ M (k) be totally indiscernible over its complement,
and let B ⊂ A. Then B is totally indiscernible over its complement.

Proof. Let { b̄1, . . . , b̄n }, { b̄′1, . . . , b̄′n } ⊂ B and let { c1, . . . , cm } ⊂ M\
⋃
B.

By relabeling, let ` be such that ci ∈
⋃
A iff i ≤ `, and let ā1, . . . , āj ∈ A be

such that ci ∈ ā1 ∪ · · · ∪ āj for i ≤ `.
As A is totally indiscernible over its complement, we have

tp(b̄1, . . . , b̄n, ā1, . . . , āj/c`+1, . . . cm) = tp(b̄′1, . . . , b̄
′
n, ā1, . . . , āj/c`+1, . . . cm)

Thus, as desired, we have

tp(b̄1, . . . , b̄n/c1, . . . cm) = tp(b̄′1, . . . , b̄
′
n/c1, . . . cm)

�

Proposition 4.5. Let A ⊆ M (k) be pairwise disjoint. Then A is totally
indiscernible over its complement if and only if A is a k-clique.

Proof. (⇒) Suppose A is totally indiscernible over its complement, and let
āi, āj ∈ A. Then by Lemma 4.4, { āi, āj } is totally indiscernible over its
complement. Thus āi and āj are exchangeable.

(⇐) Suppose A = { āi : i ∈ I } is a k-clique. Let (i1, . . . , in), (i′1, . . . , i
′
n) ∈

In. We proceed by induction on m = | { āi1 , . . . , āin } \ { āi′1 , . . . , āi′n } |.
If m = 0 then there is some σ ∈ Sym(n) such that σ(i1, . . . , in) =

(i′1, . . . , i
′
n). As σ can be written as a product of transpositions, it follows

that tp(āi1 , . . . , āin/(M \
⋃
A)) = tp(āi′1 , . . . , āi′n/(M \

⋃
A)).
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Now suppose m = ` + 1. After permuting the tuples, which we have
seen does not affect their type, we may suppose āi1 6∈ { āi′1 , . . . , āi′n } and

āi′1 6∈ { āi1 , . . . , āin }. Using that ai1 , ai′1 are exchangeable for the first equality

and the inductive hypothesis for the second, we have tp(āi1 , . . . , āin/(M \⋃
A)) = tp(āi′1 , āi2 , . . . , āin/(M \

⋃
A)) = tp(āi′1 , . . . , āi′n/(M \

⋃
A)). �

Lemma 4.6. Suppose A and B are k-cliques, A ∩ B 6= ∅, and
⋃

(A\B) ∩⋃
(B\A) = ∅. Then A ∪ B is a k-clique.

Proof. First, we show distinct tuples ā, b̄ ∈ A∪B are disjoint. If ā, b̄ ∈ A (or
ā, b̄ ∈ B, this follows from the definition of k-cliques. Otherwise ā ∈ (A\B)
and b̄ ∈ (B\A), and so are disjoint by the last assumption.

Let ā ∈ (A\B), b̄ ∈ (B \A), and choose c̄ ∈ A∩B. Let Y = M\(ā∪ b̄∪ c̄).
By a sequence of transpositions, each involving c̄, we have

tp(āb̄c̄/Y ) = tp(āc̄b̄/Y ) = tp(c̄āb̄/Y ) = tp(b̄āc̄/Y )

Thus tp(āb̄/Y c̄) = tp(b̄ā/Y c̄), and so ā ∼ b̄, as desired. �

Infinite k-cliques A in M give rise to types that support infinite arrays.

Definition 4.7. Let A be an infinite k-clique and let x̄ = (x1, . . . , xk). The
average type of A, written AvA(x̄), is the set

{φ(x̄, ē) : φ is q.f., ē ∈M<ω,M � φ(ā, ē) for some/all ā ∈ A with ā ∩ ē = ∅ }

Lemma 4.8. If A is an infinite k-clique in M , then AvA(x̄) is well-defined
and AvA(x̄) ∈ Suppk(M).

Proof. For well-definedness, we must check the “some/all” claim implicit
in the definition. As A is an infinite k-clique, ā, ā′ ∈ A are exchangeable,
hence tp(ā/ē) = tp(ā′/ē) whenever ā ∩ ē = ∅. It is easily verified that it is
a complete (quantifier-free) type over M . As any finite subset of AvA(x̄) is
realized by infinitely many ā ∈ A, we see that AvA(x̄) ∈ Suppk(M). �

For the remainder of this section, fix an integer k ≥ 1.

Definition 4.9. Let M be any L-structure.

• For any k′ ≤ k, call a k′-clique A in M sufficiently large if |A| > 2k+r.
• An extension N ⊇M is (≤ k)-clique-preserving if, for every k′ ≤ k,

every sufficiently large k′-clique A in M remains a k′-clique in N .

We will see two ways of obtaining (≤ k)-clique-preserving extensions of
M . The first follows from the definability of exchangeability.

Remark 4.10. If M∗ � M , then since exchangeability is definable, M∗

will be both age-preserving and (≤ k)-clique-preserving. Moreover, any
substructure N satisfying M ⊆ N ⊆ M∗ will also be an age-preserving,
(≤ k)-clique preserving extension of M .

The second method involves extending existing, sufficiently large cliques.



14 SAMUEL BRAUNFELD AND MICHAEL C. LASKOWSKI∗

Definition 4.11. Fix an L-structure M and recall k is fixed throughout.

(1) A simple clique extension of M is an extension N with universe
M ∪

⋃
C, where for some k′ ≤ k, C is a k′-clique in N extending some

sufficiently large k′-clique A in M .
(2) A clique extension of M is a continuous, nested union

⋃
Nα of simple

clique extensions, i.e., N0 = M , Nα+1 is a simple clique extension of
M , and Nλ =

⋃
α<λNα for limit λ.

Lemma 4.12. Every clique extension N ⊇M is (≤ k)-clique preserving.

Proof. Arguing by induction on the length of the chain, it suffices to show this
when N is a simple clique extension of M . Similarly, arguing by induction
on |C \ A|, it suffices to show this when C = A ∪ { c̄ } and N = M ∪ { c̄ }.
So choose any k′ ≤ k and any k′-clique B in M . To see that B remains a
k′-clique in N , choose b̄, b̄′ ∈ B and h̄ ∈ (N \ (b̄ ∪ b̄′))r. It suffices to show
that N |= φ(b̄, b̄′, h̄)↔ φ(b̄′, b̄, h̄) for every φ ∈ S2k′+r. Write h̄ = c̄′ē, where
c̄′ = h̄ ∩ c̄ and ē = h̄ \ c̄ (so ē ⊆M). As A is sufficiently large, choose ā ∈ A
disjoint from b̄b̄′h̄ and let ā′ ⊆ ā be the subsequence corresponding to c̄′ in c̄.
As ēā′ are from M , b̄ ∼ b̄′ in M , and as φ is quantifier-free, we have

N |= φ(b̄, b̄′, ē, ā′)↔ φ(b̄′, b̄, ē, ā′)

Since c̄ ∼ ā inN0 and b̄b̄′ē is disjoint from c̄ā, we concludeN |= φ(b̄, b̄′, ē, c̄′)↔
φ(b̄′, b̄, ē, c̄′), as required. �

Consider the case of an equivalence relation with infinitely many infinite
classes from §1.1. This was easier than the general non-mutually algebraic
case. For an example closer to the general case, consider when M is an
equivalence relation with infinitely many infinite classes, as well as infinitely
many classes of each finite size. If we proceed as in §1.1, each Mf will
be isomorphic to M . In this case, the problem is easily remedied by first
passing to an age-preserving M ′ ⊃M in which every class is infinite. In the
general case, this may not be possible, but we may find some age-preserving
M ′ ⊃M in which every (sufficiently large) maximal finite k-clique cannot be
extended further. This is the notion of fullness discussed next. Carrying out
the construction from §1.1 over this M ′, we will be able to differentiate the
maximal finite k-cliques that come from shrinking some infinite Aq from M∗

with those that were already in M ′, since only the former will be infinitely
extendable.

It is easily seen by Zorn’s Lemma that inside every M , every k′-clique A
in M is contained in a maximal k′-clique B ⊇ A in M . What is less clear
is whether a maximal k′-clique A can be extended in some age-preserving
extension N ⊇M .

Definition 4.13. Fix an L-structure M .

(1) For k′ ≤ k, call a k′-clique A in M infinitely extendable if there
is some age-preserving N ⊇ M and an infinite k′-clique C ⊇ A in
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N ; and call A unextendable if it is maximal in every age-preserving
N ⊇M .

(2) M is k-full if, for every k′ ≤ k, every sufficiently large, maximal
k′-clique A in M , A is either infinite or unextendable.

Clearly, if a k′-clique A is not infinitely extendable, then there is an age-
preserving N ⊇M and an unextendable (finite) k′-clique C in N extending
A. In fact, we can additionally require that the age-preserving extension be
(≤ k)-clique preserving as well.

Lemma 4.14. Suppose M is a countable L-structure, and for some k′ ≤ k,
A is a sufficiently large k′-clique in M . Then there is an age-preserving,
(≤ k)-clique-preserving countable N ⊇M and an extension C ⊇ A such that:

(1) If A is infinitely extendable, then C is infinite; and
(2) If A is not infinitely extendable, then C is unextendable.

Proof. In both cases, choose an age-preserving N∗ ⊇ M and a k′-clique C
in N∗ extending A that is either infinite, or of largest possible finite size.
In either case, let N be the substructure of N∗ with universe M ∪

⋃
C.

Then N is also an age-preserving extension of M , and moreover N is a
clique extension. Thus, N is a (≤ k)-clique preserving extension of M by
Lemma 4.12. �

The following lemma now follows by bookkeeping.

Lemma 4.15. Every countable structure M has a countable, k-full, age-
preserving, (≤ k)-clique-preserving extension N ⊇M .

Proof. We first claim that given any countable M , there is a countable, age-
preserving, (≤ k)-clique-preserving M ′ ⊇M such that for each 1 ≤ k′ ≤ k,
each of the (countably many) sufficiently large, finite k′-cliques A in M has an
extension C ⊇M ′ that is either infinite or is unextendable. (M ′ is obtained
as union of a countable chain of age-preserving, (≤ k)-clique-preserving
extensions formed by iterating Lemma 4.14 once for each such A.)

Now, simply iterate the claim above ω times, getting a nested sequence
M = M0 ⊆ M1 ⊆ M2 ⊆ . . . with Mn+1 = (Mn)′ from above. Then
N =

⋃
Mn is as desired. �

5. Grid extensions

We now generalize the construction of adding infinitely many new equiva-
lence classes from Case 2 of §1.1. Throughout this section, we will work with
in a finite, relational language L with arity bounded by r and we will be
considering non-mutually algebraic models that are array-minimal of index k
(recall Definition 3.1). These k are r are fixed throughout this section.
Thus, e.g., a k′-clique A will be sufficiently large if |A| > 2k + r.

Lemma 5.1. Suppose M is not mutually algebraic, M is array-minimal
of index k, there is no age-preserving N ⊇ M with 2ℵ0 siblings, and let
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p ∈ Suppk(M). Then there is an age-preserving, clique preserving N ⊇M
containing an infinite k-clique A = { ā` : ` ∈ ω } with each ā` realizing p.

Proof. As p ∈ Suppk(M), we can use Ramsey’s theorem and compactness
to find an elementary extension M∗ �M containing an order-indiscernible
over M sequence 〈ā` : ` ∈ ω〉 of realizations of p. This sequence must be
totally indiscernible over M , as otherwise Proposition 3.3 would give an age-
preserving N ⊇M with 2ℵ0 siblings. Take N to be the substructure of M∗

with universe M ∪ { ā` : ` ∈ ω }. As A = { ā` : ` ∈ ω } is totally indiscernible
over its complement, it is a k-clique by Proposition 4.5. The fact that N is
age-preserving and clique preserving follows by Remark 4.10. �

Lemma 5.2. Suppose M is not mutually algebraic, M is array-minimal
of index k, and there is no age-preserving N ⊇ M with 2ℵ0 siblings. Then
there is an R(x̄, ȳ) ∈ L, an infinite set { pq : q ∈ Q } ⊆ Suppk(M), a tuple

d̄q,r ∈ M lg(ȳ) for all q < r ∈ Q, and an age-preserving, clique-preserving
N ⊇ M with infinite k-cliques {Aq : q ∈ Q } from N such that, letting
Aq = { āq,i : i ∈ ω }, the following hold.

(1)
⋃
Aq ∩

⋃
Ar = ∅ for q 6= r.

(2) For each q ∈ Q and i ∈ ω, āq,i is a realization of pq.
(3) For each q < r ∈ Q and i ∈ ω, N |= R(āq,i, d̄q,r) ∧ ¬R(ār,i, d̄q,r).

Proof. First fix a sequence 〈pi : i ∈ Q〉 of distinct complete k-types over M ,
each of which support an infinite array. As the types are distinct, for each
i < j < ω there is an Ri,j(x̄, ȳi,j) ∈ L and d̄i,j from M such that R(x̄, d̄i,j)
is in pi but not in pj . As L is finite, by Ramsey’s theorem we can choose
a specific R(x̄, ȳ) and an infinite I ⊆ Q such that Ri,j = R whenever i < j
from I. Because of this, Clause (3) follows immediately from Clause (2).

We construct N in ω steps, once for each i ∈ I, each time applying
Lemma 5.1 to the type pi. Because each of the extensions are clique-
preserving, the union of this sequence suffices. �

Definition 5.3.

• Fix R(x̄, ȳ) ∈ L. A (k,R)-grid extension over M is an age-preserving
N ⊇M satisfying the following conditions.
(1) N = M ∪ { āq,i ∈ Nk : q ∈ Q, i ∈ ω } ∪ { d̄q,r : q < r ∈ Q }.
(2) The āq,i are pairwise disjoint and disjoint from M .
(3) For each q ∈ Q, Aq = { āq,i : i ∈ ω } is a k-clique.
(4) For all q < r ∈ Q and i ∈ ω, N |= R(āq,i, d̄q,r) ∧ ¬R(ār,i, d̄q,r).

• Let ēq,r = d̄q,r\(M ∪
⋃
q∈Q(

⋃
Aq)). Given any order-automorphism

σ ∈ Aut(Q,≤), let σ∗ be the bijection on N defined as follows.
(1) For q ∈ Q, σ∗(āq,i) = āσ(q),i;
(2) For q < r from Q, σ∗(ēq,r) = ēσ(q),σ(r)

(3) σ∗ fixes M pointwise.
• An indiscernible (k,R)-grid extension is a (k,R)-grid extension N ⊇
M such that, for every σ ∈ Aut(Q,≤), the induced σ∗ is an automor-
phism of N . We call such σ∗ a standard automorphism of N , and
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any composition of σ∗ with an element of Πq∈QSym(Aq) a permuted
standard automorphism of N .

Proposition 5.4. Suppose M is not mutually algebraic, M is array-minimal
of index k, and there is no age-preserving extension N ⊇M with 2ℵ0 siblings.
Then there is an indiscernible (k,R)-grid extension N ⊇M .

Proof. We proceed by compactness. Expand the language by constant
symbols naming every element of M , as well as k-tuples of constants
{ āq,i : q ∈ Q, i ∈ ω } and `-tuples of constants { d̄q,r : q < r ∈ Q }, where ` is
the length of d̄q,r in Lemma 5.2. Consider the theory T ∗ in this language:

(1) The elementary diagram of M .
(2) The āq,i are pairwise disjoint, and no element from M is in any such

tuple.
(3) For q < r ∈ Q, R(āq,0, ār,0, d̄q,r) ∧ ¬R(ār,0, āq,0, d̄q,r).
(4) Each Aq = { āq,i : i ∈ ω } is a k-clique, and is order indiscernible over

all the other constants.
(5) For every σ ∈ Aut(Q,≤), let σ∗ be the induced bijection of M ∪
{ āq,i : q ∈ Q, i ∈ ω } ∪ { d̄q,r : q < r ∈ Q }. Then σ∗ is an automor-
phism.

Models of finite subsets of T ∗ are obtained by applying the finite Ramsey
theorem to the model from Lemma 5.2. Thus, by compactness, we obtain a
model M∗ |= T ∗. Taking the restriction of M∗ to the constant symbols, and
letting N be the reduct to the original language, we are finished. �

Definition 5.5. Let N ⊃M be an indiscernible (k,R)-grid extension. For
q < r ∈ Q, let ēq,r be as in Definition 5.3. By indiscernibility, each ēi,j must
be the same length.

Define the rank of N ⊇M to be the length of any ēi,j . It is possible for
the rank to be 0.

Example 4. Let M consist of an equivalence relation with infinitely many
infinite classes, and let N = M ∪ { aq,i : q ∈ Q, i ∈ ω }, where each Aq =
{ aq,i : i ∈ ω } is a new class. Then we may take d̄q,r = aq,0, giving rank 0.

Our next example codes equivalence relations in a different language. Take
M in a language (U, V,R), where U, V are unary and R is binary. Let U and
V be infinite and partition M , and let R be such that for each u ∈ U there
is a unique v ∈ V such that R(u, v), and for each v ∈ V there are infinitely
u ∈ U such that R(u, v). Let N = M ∪ {uq,i : q ∈ Q, i ∈ ω } ∪ { vq : q ∈ Q },
where each uq,i ∈ U , vq ∈ V , and R(uq,i, vr) holds if q = r. Taking Aq =
{uq,i : i ∈ ω } and d̄q,r = vq gives rank 1. We could not have given this
extension rank 0, as {uq,i : q ∈ Q, i ∈ ω } is totally indiscernible over M ; the
vq’s are needed to break them into distinct k-cliques.

We now show that in an indiscernible (k,R)-grid extension of minimum
rank, each Ai is a maximal k-clique.
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Definition 5.6. Let N ⊃M be an indiscernible (k,R)-grid extension. Two
tuples ā1 ⊂ āq,i, ā2 ⊂ ār,j are associated if the natural bijection between āq,i
and ār,j maps ā1 to ā2.

The next lemma is analogous to Lemma 3.9.

Lemma 5.7. Suppose M is not mutually algebraic, M is array-minimal
of index k, and N ⊃ M is an indiscernible (k,R)-grid extension. Sup-
pose ā1 ( āq,i, ā2 ( ār,j are associated. Then tp(ā1/(N\(āq,i ∪ ār,j))) =
tp(ā2/(N\(āq,i ∪ ār,j))).

Proof. We may assume q 6= r, since otherwise this follows from āq,i ∼ āq,j ,
and for definiteness take q < r. By indiscernibility, it suffices to prove this
assuming i = j = 0. Let N0 = N\ { ā`,0 : ` ∈ Q }.

Claim. tp(ā1/N0) = tp(ā2/N0).

Proof of Claim. Each standard automorphism fixes N0 setwise. Suppose
tp(ā1/N0) 6= tp(ā2/N0), as witnessed by w̄. Then for any σ ∈ Aut(Q,≤), the
standard automorphism σ∗(w̄) witnesses that tp(σ∗(ā1)/N0) 6= tp(σ∗(ā2)/N0).
But this contradicts that M is array-minimal of index k. ♦

Now suppose w̄ witnesses that tp(ā1/(N\(āq,0∪ ār,0))) 6= tp(ā2/(N\(āq,0∪
ār,0))). Let π ∈ ΠiSym(Ai) be such that π(w̄) ∈ N0, and π fixes āq,0 and
ār,0. Then π(w̄) witnesses that tp(ā1/N0) 6= tp(ā2/N0), contradicting the
Claim. �

Lemma 5.8. Suppose M is not mutually algebraic, M is array-minimal of
index k, and N ⊃M is an indiscernible (k,R)-grid extension of minimum
rank. For a given q ∈ Q and h̄ ∈ Nk, h̄ ∼ āq,0 only if h̄ is a permutation of
āq,i for some i.

In particular, for every q, Aq = { āq,i : i ∈ ω } is a maximal k-clique.

Proof. Fix q ∈ Q, and suppose h̄ ∈ Nk is not a permutation of some āq,i.
Let N = M tA t E, where A =

⋃
i(
⋃
Ai) and E = N\(M ∪A). The proof

splits into two cases.
Case 1: h̄ ∩ E 6= ∅. Let ēs,t ⊂ E be such that ēhs,t = h̄ ∩ ēs,t 6= ∅, and

let ē′s,t = ēs,t\ēhs,t. As h̄ ∼ āq,0, let āhq,0 ⊂ āq,0 correspond to the entries of

ēhq,0. Let d̄s,t witness that c̄s,0 6∼ c̄t,0, with ēs,t ⊂ d̄s,t. Let d̄∗s,t be obtained

by replacing ēs,t with c̄hq,0ē
′
s,t. Let ` be large enough that none of the tuples

mentioned so far intersect ās,` or āt,`. We will show d̄∗s,t still witnesses that
c̄s,` 6∼ c̄t,`, contradicting the fact that N has minimum rank.

By taking an automorphism replacing āq,0 with some āq,i, we may assume
d̄s,t ∩ āq,0 = ∅. Let d̄′s,t = d̄s,t\ēs,t. Since h̄ ∼ āq,0, tp(h̄/ās,`āt,`ē

′
s,td̄
′
s,t) =

tp(āq,0/ās,`āt,`ē
′
s,td̄
′
s,t). Thus tp(ēhs,t/ās,`āt,`ē

′
s,td̄
′
s,t) = tp(āhq,0/ās,`āt,`ē

′
s,td̄
′
s,t),

and so tp(d̄s,t/ās,`āt,`) = tp(d̄∗s,t/ās,`āt,`).

Case 2: h̄ ∩ E = ∅. Given an interval [x, y) in ω, we let A �[x,y)=⋃
{ āq,i : q ∈ Q, i ∈ [x, y) }. Choose `1 such that h̄ ∩A ⊂ A �[0,`1). Fix r > q,
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and let w̄ witness āq,0 6∼ ār,0. By permuting each Ai, we may choose `2 > `1
so that w̄ ⊂ A �[`1,`2). For any ` ≥ `2, we have w̄ also witnesses āq,` 6∼ ār,`.
Let N0 = N\(A �[0,`1)). We use x̄ ∼N0 ȳ to mean x̄ and ȳ are exchangeable
over N0, i.e. for any z̄ from N0, tp(x̄ȳz̄) = tp(ȳx̄z̄).

Claim. h̄ ∼N0 ār,`.

Proof of Claim. As h∩E = ∅, let h̄ ⊂ n̄āt1,i1 . . . ātj ,ij = ḡ, where n̄ = h̄∩M ,
each i < `1, and t1 ≤ · · · ≤ tj . Let s1 ≤ · · · ≤ sj < q, let ḡ2 = n̄ās1,i1 . . . āsj ,ij ,

and let h̄2 ⊂ ḡ2 be associated with h̄. By Lemma 5.7, we have tp(h̄/N0) =
tp(h̄2/N0). In particular, tp(h̄/c̄q,`c̄r,`d̄) = tp(h̄2/c̄q,`c̄r,`d̄), for all d̄ ⊂ N0.

Thus we have h̄ ∼N0 āq,` ⇐⇒ h̄2 ∼N0 āq,`, and similarly for ār,`. By
assumption, h̄ ∼ āq,`, so we also have h̄ ∼N0 āq,`. Now let σ ∈ Aut(Q,≤)
be an automorphism with σ(q) = r and fixing all s ≤ sj , and let σ∗ be the
corresponding standard automorphism. This shows h̄2 ∼N0 ār,`, and so we
also have h̄ ∼N0 ār,`. ♦

We now handle the fact that h̄ might intersect w̄. As we took w̄ ∈ A �[`1,`2),

and h̄ ∩ E = ∅, we have m̄ = h̄ ∩ w̄ ⊂M . Let h̄ = h̄′m̄ and w̄ = w̄′m̄. Then

tp(āq,`ār,`w̄
′h̄) = tp(h̄ār,`w̄

′āq,`) = tp(ār,`h̄w̄
′āq,`) = tp(ār,`āq,`w̄

′h̄)

where we have used h̄ ∼ āq,` in the first and third equalities, and h̄ ∼N0 ār,`
in the second.

Removing h̄′ from the initial and final expressions, and noting w̄ =
w̄′(h̄\h̄′), we contradict that w̄ witnesses āq,` 6∼ ār,`. �

Definition 5.9. Let N ⊃ M be an indiscernible (k,R)-grid extension. A
k-clique B = { b̄s : s ∈ I } ⊂ Nk is homogeneous if each b̄s ∈ B can be
partitioned into n̄sm̄s (with either part of the partition possibly empty)
satisfying the following.

(1) n̄s is from (N \M), m̄s is from M .
(2) For each 1 ≤ t ≤ k, for all s, s′ ∈ I, (b̄s)t ∈M iff (b̄s′)t ∈M .
(3) For all s, s′ ∈ I there is some permuted standard automorphism σ∗

such that σ∗(n̄s) = n̄s′ .

Lemma 5.10. Suppose that M is k-full and that N ⊃M is an indiscernible
(k,R)-grid extension. There is a constant C ′ so that if B is a maximal
k-clique in N that has size at least C ′ and is infinitely extendable, then B is
already infinite.

Proof. By two applications of the pigeonhole principle, we can compute a
C ′ so that any k-clique of size C ′ contains a homogeneous k-clique B0 with
|B0| ≥ 2. The result will follow by infinitely iterating the following claim to
show B0 is infinitely extendable. By Lemma 4.12 B will remain a k-clique
in the corresponding clique-extension, and so be infinitely extendable by
Lemma 4.6.
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Claim. Suppose B0 ⊂ N is a finite, homogeneous, infinitely extendable k-
clique of size at least 2. Then there is a proper extension B1 ) B0 that is
also homogeneous.

Proof of Claim. First, since B0 = { n̄sm̄s : s ∈ I } is a k-clique in N , the
subsequences { m̄s : s ∈ I } form an `-clique in M ′, where ` = lg(m̄). Because
B0 is infinitely extendable, so is { m̄s : s ∈ I }. As M ′ is `-full, we can find
some m̄∗ so that { m̄s : s ∈ I } ∪ { m̄∗ } is an `-clique in M ′, and thus in N ,
as M ′ ⊂ N is a k-clique-preserving extension. (If m̄s is empty, this may be
ignored.)

Choose a permuted standard automorphism π ∈ Aut(N) such that π fixes
n̄0 and π(n̄1) is disjoint from

⋃
B0 (the existence of π uses the homogeneity

of B0). Let n̄∗ := π(n̄1). We claim that B0 ∪ { n̄∗m̄∗ } is a homogeneous
k-clique. The homogeneity is clear from the construction. We now show
{n0m0, n

∗m∗ } is a k-clique, and that B0 ∪ { n̄∗m̄∗ } is a k-clique will follow
by Lemma 4.6.

tp(n̄∗m̄∗n̄0m̄0/(N\n̄∗m̄∗n̄0m̄0)) = tp(n̄∗m̄1n̄0m̄0/(N\n̄∗m̄1n̄0m̄0))

= tp(n̄1m̄1n̄0m̄0/(N\n̄1m̄1n̄0m̄0))

= tp(n̄0m̄0n̄1m̄1/(N\n̄1m̄1n̄0m̄0))

= tp(n̄0m̄0n̄
∗m̄1/(N\n̄∗m̄1n̄0m̄0))

= tp(n̄0m̄0n̄
∗m̄∗/(N\n̄∗m̄∗n̄0m̄0))

We have used that { m̄1, m̄
∗ } is an `-clique in lines 1 and 5, applied π−1

to get to line 2, used that {n0m0, n1m1 } is a k-clique to get to line 3, and
applied π to get to line 4. ♦

�

6. Non-mutually algebraic T

Theorem 6.1. If M is a non-mutually algebraic model of T , then there is
an age-preserving N ⊇M with 2ℵ0 siblings.

Proof. First take an age-preserving M ′′ ⊇M that is array-minimal of index k,
by Lemma 3.2. Then by Lemma 4.15, let M ′ ⊇M ′′ be a k-full age-preserving,
k-clique-preserving extension. Suppose M ′ has no age-preserving extension
with 2ℵ0 siblings, and by Proposition 5.4, let N ⊇ M ′ be an indiscernible
(k,R)-grid extension over M ′, for some R ∈ L, of minimum rank. We will
show N has 2ℵ0 siblings, which is a contradiction.

Choose a dense/codense subset D ⊆ Q, and let Dc = Q\D. Using the
notation of Definition 5.3, let NDc be the substructure of N with universe
M ′ ∪ { āi,` : i ∈ Dc, ` ∈ Q } ∪ { ēi,j : i < j, i, j ∈ Dc }. By the indiscernibility,
NDc is isomorphic to N over M ′. Thus, any model N∗ satisfying NDc ⊆
N∗ ⊆ N is a sibling of N , in fact via embeddings that fix M ′ pointwise.

Let r be the maximum arity of the language, let C ′ be from Lemma 5.10,
and choose C such that any k-clique of size at least C contains a homogeneous
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k-clique of size max(C ′, 2k + r). Given an injective f : D → ω\[C], we
construct Nf ⊂ N by restricting Aq to a subset A∗q of size f(q), for each
q ∈ D. It remains to show the Nf are pairwise non-isomorphic. The
following claim is sufficient, as being an infinitely extendable k-clique of size
n is type-definable.

Claim. For any n ≥ C, Nf has an infinitely extendable maximal k-clique of
size n if and only if n ∈ Im(f).

Proof of Claim. (⇐) Let q ∈ Q be such that f(q) = n. First, N is visibly a
clique extension of Nf , hence N is (≤ k)-clique-preserving by Lemma 4.12.
Thus, as Aq is a maximal k-clique in N by Lemma 5.8, A∗q is a maximal
k-clique in Nf . As it is infinitely extendable to Aq, we are finished.

(⇒) This will follow immediately from Lemma 6.2. ♦

�

Lemma 6.2. Let C ∈ ω, D ⊂ Q, Nf , and {A∗q : q ∈ D } be as in the proof of

Theorem 6.1. If B ⊂ (Nf )k is a finite infinitely extendable maximal k-clique
of size at least C, then there is some q ∈ D such that each element of B is a
permutation of some element of A∗q.
Proof. Suppose not. We now work within Nf . Suppose |B| ≥ C, let n =
max(C ′, 2k + r) (where C ′ is from Lemma 5.10 and r is the maximum arity
of the language), and let { b̄i : i < n } = B− ⊂ B be a homogeneous k-clique.
We first prove the conclusion for B−. There must be some q ∈ D such
that

⋃
B− intersects

⋃
A∗q ; otherwise B− would be infinitely extendable by

Lemma 5.10. Pick such a q. There is at least one j such that b̄0 ∩ āq,j 6= ∅,
so let c̄0 = b̄0 ∩ āq,j , and let lg(c̄0) = k′ < k (this inequality is strict by our
assumption that b̄0 is not a permutation of āq,j). For each i, let c̄i be the
subtuple of b̄i associated with c̄0, and let C = { c̄i : i < n }. By relabeling, we
may assume c̄i = b̄i ∩ āq,i.
Claim. C is a k′-clique.

Proof of Claim. Suppose c̄0 6∼ c̄1, as witnessed by w̄, with lg(w̄) ≤ r. Then
w̄ ∩ (b̄0 ∪ b̄1) 6= ∅, otherwise w̄ would witness b̄0 6∼ b̄1.

As B− is sufficiently large, by relabeling we may suppose w̄ does not
intersect b̄2 ∪ b̄3. Let π be the automorphism swapping āq,0 with āq,2 and
swapping āq,1 with āq,3, while fixing everything else. Then π(w̄) witnesses
c̄2 6∼ c̄3, but π(w̄) ∩ (b̄2 ∪ b̄3) = ∅, which is a contradiction. ♦

Now work in N , and note that C remains a k′-clique in N by Lemma 4.12,
since N is a clique extension of Nf . For each r ∈ Q, let σ∗r be a standard
automorphism sending Aq to Ar. Each σ∗r (C) is a k′-clique that extends
to an infinite k′-clique within N . However, for r1 6= r2, σ∗r1(c̄0) 6∼ σ∗r2(c̄0),
since σ∗r1(ā0) 6∼ σ∗r2(ā0), so the average types of these infinite extensions
are distinct. Thus, by Lemma 4.8, we conclude that Suppk′(N) is infinite,
contradicting that M is array-minimal of index k.

Given the conclusion for B−, it follows for B by Lemma 5.8. �
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7. Mutually algebraic T

7.1. The non-cellular case. In this subsection, we prove that if M is
mutually algebraic but non-cellular, then it admits a countable elementary
extension with 2ℵ0 siblings.

If L is finite relational and M is mutually algebraic, then by Theorem 2.5,
there is another finite relational language L′ in which every atomic relation
is mutually algebraic, and such that L′ is quantifier-free interdefinable with
an expansion of L naming finitely many constants.

Adding finitely many constants to our language changes our sibling count
by at most a factor of ℵ0, and so will not affect this subsection. Adding
the constants and switching language to L′ as above, we may assume the
following.

For this subsection, we assume M is mutually algebraic in a finite
relational language with mutually algebraic atomic relations.

Definition 7.1. Given M in a language with mutually algebraic atomic
relations, we may construct a corresponding hypergraph GM on the same
universe, placing an edge on a tuple m̄ if R holds on (some permutation of)
m̄ for some R ∈ L.

We call A ⊆M an MA-connected part if A is a connected part of GM .
Equivalently, we may use that if δ(x, ȳ) and θ(x, z̄) are quantifier-free

mutually algebraic with at least one variable symbol x in common, then
δ(x, ȳ) ∧ θ(x, z̄) is quantifier-free, mutually algebraic. Then A ⊆ M is an
MA-connected part iff, for all a, b ∈ A, there are { c2, . . . , cn } ⊆ A and a
quantifier-free mutually algebraic φ(x, y, z̄) such that M |= φ(a, b, c2, . . . , cn)

An MA-connected component is a maximal MA-connected part.

Lemma 7.2. The following points follow from the corresponding facts for
connected parts of hypergraphs.

(1) If A,B ⊆M are MA-connected parts and A ∩B = ∅, then A ∪B is
an MA-connected part.

(2) Every MA-connected part is contained in a unique MA-connected
component.

(3) If C is an infinite MA-connected part, there is a nested sequence
B0 ( B1 ( . . . such that ∪iBi = C and each Bi is a finite MA-
connected part.

Suppose M and N are siblings. Then Age(M) = Age(N) and so if M
thinks that δ(x1, . . . , xn) is mutually algebraic, then N also thinks this. Using
this fact, we have:

Lemma 7.3. Suppose M and N are siblings and f : M → N is an embedding.
Then for any MA-connected part A ⊆M , f(A) is an MA-connected part of
N . Thus, if C ⊆M is an MA-connected component, then f(C) is contained
in an MA-connected component as well.
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Lemma 7.4. Suppose M is mutually algebraic and there is an infinite set
{Ci : i ∈ ω } of components such that for each i, Ci properly embeds into
Ci+1, but there is no embedding of Ci+1 into Ci. Then M has 2ℵ0 siblings.

Proof. Call an MA-connected component Z outside the scope if there is no
embedding of Z into any Ci. Let Z∗ =

⋃
{Z : Z is outside the scope }. Note

that any MA-connected component inside the scope embeds into all but
finitely many Ci. For each infinite S ⊆ ω, let NS be the substructure of N
with universe Z∗ ∪ {Ci : i ∈ S }.

We first argue that each NS is a sibling of M . Fix any infinite S ⊆ ω.
Enumerate the MA-connected components {Yj : j ≤ ω } of M that are within
the scope. Inductively define a mapping h : M → NS as the union of a
chain of mappings 〈hn : n ∈ ω〉 as follows. Let h0 : Z∗ → NS be the identity.
Assume that hj : N∗∪{Yt : t < j } → NS has been defined. Given Yj , choose
some i not already chosen so that Yj embeds into Ci, and let hj+1 extend hj
by mapping Yj into Ci.

To see the NS are pairwise non-isomorphic, note that NS contains an
MA-connected component isomorphic to Ci iff i ∈ S. As isomorphisms
must map MA-connected components to MA-connected components, we are
finished. �

Lemma 7.5. If M contains infinite, pairwise isomorphic MA-connected
components {Ci : i ∈ ω }, then M has 2ℵ0 siblings.

Proof. We will produce a sibling N of M satisfying the hypotheses of
Lemma 7.4, which suffices.

Let X ⊂ ω be infinite/co-infinite. We will produce N by shrinking each
Ci with i ∈ X. We will have that M embeds into N as we leave an infinite
collection of Ci unaltered.

As C0 is infinite, by Lemma 7.2 write C0 =
⋃
{Bi : i ∈ ω }, where each

Bi is a finite, MA-connected part and Bi ( Bi+1 for each i. We now
construct N ⊂ M by restricting Ci down to an isomorphic copy of Bi, for
each i ∈ X. �

Theorem 7.6 ([3]). Let L be finite relational, and suppose M is a mutually
algebraic but non-cellular countable L-structure. Then there is some M∗ �M
such that M∗ contains infinitely many new infinite MA-connected components,
pairwise isomorphic over M .

Furthermore, we may take the universe of M∗ to be the universe of M
together with these new components.

Proposition 7.7. If M is not cellular then there is an age-preserving ex-
tension N with 2ℵ0 siblings. In the case where M is mutually algebraic, N
can be chosen to be an elementary extension of M .

Proof. Suppose M is not cellular. If M is not mutually algebraic, then we
are done by Theorem 6.1.

If M is mutually algebraic but non-cellular, then produce M∗ �M as in
Theorem 7.6. By Lemma 7.5, M∗ has 2ℵ0 siblings. �
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7.2. The cellular case. In this subsection, we will be able to directly
consider the siblings of M , rather than of some age-preserving extension.

Example 5. Consider the cellular graph M consisting the disjoint union of
infinitely many disconnected edges and an infinite independent set. Here, we
may obtain ℵ0 siblings as follows. First, we pass to the subgraph N removing
the independent set, which will be a sibling of M . Then, for each i ∈ ω, we
obtain a sibling Ni by removing a point from i of the edges.

Note that in a cellular partition (Definition 2.2), for a fixed i ∈ [n],
{ c̄i,j : j ∈ ω } is a ki-clique.

Definition 7.8. A cellular partition is separated if for every i ∈ [n], there is
no proper subtuple of c̄i,0 such that the set of associated subtuples amongst
{ c̄i,j : j ∈ ω } forms a k-clique.

Given a cellular partition, we may always produce a separated cellular
partition by increasing n and splitting apart any offending tuples.

Suppose M is cellular, with cellular partition K ∪ { c̄i,j : i ∈ [n], j ∈ ω }.
Given some c̄i,j and S ⊆ [ki], let c̄Si,j = (c`i,j |` ∈ S) ⊆ c̄i,j . Then every

substructure N ⊆M is specified by N ∩K as well as, for each i ∈ [n] and
S ⊆ [ki], the number of j such that N ∩ c̄i,j = c̄Si,j .

Recall that M is finitely partitioned if and only if |c̄i,j | = 1 for every i.

Lemma 7.9. If M is cellular and not finitely partitioned, then M has ℵ0

siblings.

Proof. By the discussion above, a cellular structure has at most ℵ0 siblings.
Let K∪{ c̄i,j : i ∈ [n], j ∈ ω } be a separated cellular partition of M . As M is
not finitely partitioned, there is some i such that |c̄i,j | > 1. Fix some ` ∈ ω, for
each i, j let cj be the first element of c̄i,j , and let M` = M\ { c̄i,j\cj : j ≤ ` }.
For any i′ such that |c̄i′,j | = 1 and { cj : j ≤ ` } ∪ { c̄i′,j : j ∈ ω } is a 1-clique,
remove all c̄i′,j , and let M∗` be the resulting structure. Note M∗` is a sibling
of M .

We now show there is no m ∈ M∗` \K such that m ∼ cj for some j ≤ `.

Suppose there is, and m is the kth element of c̄i′,j′ for some i′ ∈ [n] and j′ ∈ ω.

Then cj will be exchangeable with the kth element of c̄i′,j′′ for every j′′ ∈ ω,
and so these elements will form a 1-clique. If |c̄i′,j′ | = 1, this contradicts the
construction of M∗` . If |c̄i′,j′ | > 1, this contradicts that we started with a
separated cellular partition.

Let C` be the maximal 1-clique in M∗` containing { cj : j ≤ ` }. Then
C` ⊆ K ∪ { cj : j ≤ ` } by the previous paragraph, so ` ≤ |C`| ≤ |K| + `.
In M∗` , any 1-clique containing a point outside K ∪ { cj : j ≤ ` } is either a
singleton or infinite, since, as in the previous paragraph, if x ∼ y where y
is the kth coordinate of c̄i′,j′ , then x is exchangeable with the kth element
of c̄i′,j′′ for every j′′ ∈ ω. Thus for ` > |K|, C` will be the largest maximal
finite 1-clique of M∗` . By the bounds above on |C`|, if `′ > |K| + `, then
|C`′ | > |C`|, and so M∗`′ 6∼= M∗` , since their largest maximal finite 1-cliques
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have different sizes. Thus, by varying `, we may produce ℵ0 siblings of
M . �

Lemma 7.10. If M is finitely partitioned, then M has one sibling, namely
itself.

Proof. As M is ω-categorical, it admits an ω-categorical model-companion
M∗ [15]. Then M∗ is a sibling of M , so it suffices to show M∗ has only one
sibling.

As being finitely partitioned is a universal property, M∗ is also finitely
partitioned, and so admits a cellular partition with K = acl(∅), and |c̄i,j | = 1
for each i ∈ [n], so let ci,j be the one element of c̄i,j . We may further
assume that we have taken n minimal (subject to |c̄i,j | = 1), and thus
tp(ci,j/K) 6= tp(ci′,j/K) for i 6= i′.

As M∗ is model-complete, every x ∈ K is algebraic by an existential
formula, so any substructure with the same age must contain all of K. The
age of M∗ also specifies { ci,j } is infinite for each i, so any substructure with
the same age is isomorphic to M∗. �

7.3. The main theorem. Putting together the results of this section, we
have our main theorem.

Theorem 7.11. Let T be a universal theory in a finite relational language.
Then one of the following holds.

(1) T is finitely partitioned. Every model of T has one sibling.
(2) T is cellular. The finitely partitioned models of T have one sibling

and the non-finitely partitioned models have ℵ0 siblings.
(3) T is not cellular. For every non-cellular M |= T , there is some

N ⊇M such that N |= T and N has 2ℵ0 siblings. Furthermore, if T
is mutually algebraic, we may take N �M .

If T admits a structure universal for its age, this immediately gives the
following corollary.

Corollary 7.12. Let M be a countable model in a finite relational language
that is universal for its age. Then one of the following holds.

(1) M is finitely partitioned, and has one sibling.
(2) M is cellular but not finitely partitioned, and has ℵ0 siblings.
(3) M is not cellular, and has 2ℵ0 siblings.

A weakening of “finite relational language” is given in the following
definition.

Definition 7.13. We say M has finite profile if, for every n, the number of
isomorphism types of substructures of size n is finite.

We now show the assumption of a finite relational language in Corollary
7.12 cannot be weakened to finite profile.
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Example 6. Let the language consist of one n-ary relation symbol Rn for
each n ∈ ω. Let x̄n = (x1

n, . . . , x
n
n). Let M =

⊔
n∈ω x̄n t

⊔
n∈ω yn, where

Rn(x̄) holds iff x̄ = x̄n, and the yn form an independent set.

M is not ω-categorical, as xin and xjm have different (non-quantifier-free) 1-
types for n 6= m. For each n, the isomorphism type of n points is determined
by which tuples x̄i for i ≤ n they contain, and so M has finite profile. That
M is universal for its age is clear by inspection.

Age-preserving extensions of M can only add further points to the inde-
pendent set, and so the only sibling of M is itself. As M is not ω-categorical,
it is not finitely partitioned, nor even cellular.

As noted in [7], Corollary 7.12 implies the same conclusion with the
hypothesis that M is universal for its age replaced with the hypothesis that
M is ω-categorical, since we may then pass to the model companion of M .

We also obtain a positive answer to a question from [7] as another corollary
of our result. The proof simply goes through each case of Theorem 7.11,
which immediately implies the corresponding case of the corollary.

Corollary 7.14. Given an age A, let (Mod(A),≤) be the set of countable
structures with age A, quasi-ordered by embeddability. Then for any M ∈
Mod(A), the number of structures above M is equal to |Mod(A)|.

8. Open questions

Conjecture 1 (Thomassé, [16]). Given a countable structure M in a count-
able relational language, M has either 1, ℵ0, or 2ℵ0 siblings, up to isomor-
phism.

As mentioned in the introduction, Conjecture 1 seems outside the scope of
the model-theoretic approach of this paper. However, an interesting special
case to consider may be when M is mutually algebraic. After naming finitely
many constants, we may decompose M into MA-connected components,
which seem easy to analyze. However, the effect of naming the constants is
mysterious.

Problem 1. Confirm Conjecture 1 when M is mutually algebraic.

As noted in the introduction, the arguments in this paper bear out the
following intuition: if a universal theory T is non-cellular, then either it
is unstable and so has a model encoding (Q, <), or has a model that in
some sense encodes an infinite partition, i.e. a partition with infinitely many
infinite parts.

Question 1. What is the proper notion of “encodes an infinite partition” to
formalize the intuition above?

Even attempting to plausibly refine Conjecture 1 to describe which struc-
tures fall into which of the three cases seems difficult, but answering Question
1 may be helpful. We know that there are two reasons for a universal theory



COUNTING SIBLINGS IN UNIVERSAL THEORIES 27

to have a model with 2ℵ0 siblings: either there is a model encoding a linear
order with 2ℵ0 siblings (namely (Q, <)) or a model “encoding an infinite
partition”. Perhaps the same is essentially true at the level of individual
models, although we must weaken the requirement of an infinite partition,
since an equivalence relation with arbitrarily large finite classes also has 2ℵ0

siblings.

Question 2. If a countable relational structure M has 2ℵ0 siblings, must M
either encode a linear order with 2ℵ0 siblings, or either “encode an infinite
partition” or “encode a partition with arbitrarily large finite parts” in the
sense of Question 1?

From [8], we know exactly which countable linear orders have 2ℵ0 siblings;
furthermore, the linear orders with 2ℵ0 siblings seem to either encode infinite
partitions or partitions with arbitrarily large finite parts.

The final section of [7] and the introduction of [14] contain several open
problems, some of which we mention below.

A positive answer to the following conjecture would answer Problem 2 of
[14]. As mentioned there, Lachlan has proven that an age A has a unique
countable model up to elementary equivalence iff A is finitely partitioned [6].

Conjecture 2. Theorem 7.11 can be strengthened to pairwise non-elementarily
equivalent siblings in all cases. In particular, given an age A, there are 2ℵ0

non-elementarily equivalent countable structures of age A iff A is non-cellular.

The place where our proof falls short of this conjecture is that whether
a k-clique is infinitely extendable does not seem to be definable. However,
in some cases, considering infinite extendability is unnecessary; for example,
if M has only finitely many 1-types, in particular if M is ℵ0-categorical,
then there is a bound C on the size of k-cliques appearing in M . When
constructing Nf in Theorem 6.1, we may always shrink our k-cliques above
C, and distinguish Nf from Ng by whether it has a maximal k-clique of some
particular size above C. Thus we have proven Conjecture 2 in the case A is
the age of an ℵ0-categorical structure.

Given an age A, let Mod(A)/≡ denote the bi-embeddability classes of
countable structures with age A. Thomassé’s conjecture is concerned with
the size of any single ≡-class. There are several conjectures regarding the
number of ≡-classes in [7], from which we mention the following.

Conjecture 3 ([7]). For an age A in a finite relational language, |Mod(A)/≡|
is finite if and only if |Mod(A)/≡| = 1 if and only if A is cellular.

If the conjecture above is true, then the only possibilities for |Mod(A)/≡|
are { 1,ℵ0,ℵ1, 2

ℵ0 } [7]. Classifying which ages fall into which case would be
a natural next step.

For problems involving model-counting in an age, such as in this paper or
the problem of determining |Mod(A)| in [14], the dividing lines are preserved
under arbitrary expansions by (finitely many) unary relations. This is clear
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after proving that these dividing lines correspond to being finitely partitioned
or being cellular. However, if this could be proven as a first step, then the
approach taken in this paper could be drastically simplified, since a non-
mutually algebraic theory admits a model such that in a unary expansion
there is a definable equivalence relation on singletons with infinitely many
infinite classes. We then wouldn’t have to worry about hybrid tuples, and
wouldn’t have to use grid extensions to mimic the behavior of such an
equivalence relation.

Question 3. Let M be a countable structure in a finite relational language,
and let M∗ be an expansion by finitely many unary relations. Let A and
A∗ be their respective ages. Can any of the following statements be proven
without first classifying the dividing lines?

(1) If |Mod(A∗)| = 2ℵ0, then |Mod(A)| = 2ℵ0.
(2) If Mod(A∗) has a structure with 2ℵ0 siblings, then so does Mod(A).
(3) If |Mod(A∗)/≡| is infinite, then so is |Mod(A)/≡|.
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[16] Stéphan Thomassé, Conjectures on Countable Relations, 2012, Manuscript.


	1. Introduction
	1.1. Proof sketch

	2. Conventions and background
	3. Strictly order indiscernible arrays
	4. k-cliques
	5. Grid extensions
	6. Non-mutually algebraic T
	7. Mutually algebraic T
	7.1. The non-cellular case
	7.2. The cellular case
	7.3. The main theorem

	8. Open questions
	References

