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Abstract

We define an easily verifiable notion of an atomic formula having
uniformly bounded arrays in a structure M . We prove that if T is a
complete L-theory, then T is mutually algebraic if and only if there
is some model M of T for which every atomic formula has uniformly
bounded arrays. Moreover, an incomplete theory T is mutually alge-
braic if and only if every atomic formula has uniformly bounded arrays
in every model M of T .

1 Introduction

The notion of a mutually algebraic formula was introduced in [1], and the
notions of mutually algebraic structures and theories were introduced in [3].
There, many properties were shown to be equivalent to mutual algebraicity,
e.g., a structure M is mutually algebraic if and only if every expansion (M,A)
by a unary predicate has the non-finite cover property (nfcp) and a complete
theory T is mutually algebraic if and only if it is weakly minimal and triv-
ial. Whereas these characterizations indicate the strength of the hypothesis,
they do not lead to an easy verification that a specific structure is mutually
algebraic. This paper is concerned with finding equivalents of mutual alge-
braicity, some of which are easily verifiable. Most notably, we introduce the
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notion of a structure or a theory having uniformly bounded arrays and we
prove that for structures M in a finite, relational language, M is mutually
algebraic if and only if M has uniformly bounded arrays. This equivalence
plays a key role in [4].

2 Preliminaries

Let M be any L-structure and let ϕ(z) be any L(M)-formula. We say that
ϕ(z) is mutually algebraic if there is an integer k such that for any proper
partition z = xˆy (i.e., each of x, y are nonempty) M |= ∀x∃≤kyϕ(x, y).
Then, following [3], a structureM is mutually algebraic if every L(M)-formula
is equivalent to a boolean combination of mutually algebraic L(M)-formulas,
and a theory T is mutually algebraic if every model of T is a mutually
algebraic structure. The following Theorem, which has the advantage of
looking only at atomic formulas, follows easily from two known results.

Theorem 2.1. Let M be any L-structure. Then M is mutually algebraic if
and only if every atomic formula R(z) is equivalent to a boolean combination
of quantifier-free mutually algebraic L(M)-formulas.

Proof. First, assume M is mutually algebraic. The fact that every
atomic R(z) is equivalent to a boolean combination of quantifier-free mutu-
ally algebraic L(M)-formulas is the content of Proposition 4.1 of [2]. For
the converse, let MA∗(M) denote the set of L(M)-formulas that are boolean
combinations of mutually algebraic formulas. This set is clearly closed un-
der boolean combinations, and is closed under existential quantification by
Propositon 2.7 of [3]. Thus, if we assume that every atomic formula is in
MA∗(M), it follows at once that every L(M)-formula is in MA∗(M), hence
M is mutually algebraic.

We will obtain a slight strengthening of Theorem 2.1 with Corollary 7.4(2).
Whereas Theorem 2.1 placed no assumptions on the language, the main body
of results in this paper assume that the underlying language is finite rela-
tional. In Section 7 we obtain equivalents to mutual algebraicity for struc-
tures in arbitrary languages.

Henceforth, for all results prior to Section 7, assume L has finitely
many relation symbols, finitely many constant symbols, and no
function symbols.
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For L as above, fix a sequence z = (z1, . . . , zn) of variable symbols and
assume that every atomic R ∈ L has variable symbols among {z1, . . . , zn}.
Fix an L-structure M . For a non-empty subsequence x ⊆ z and a subset
B ⊆ M , let QFx(B) denote the set of all quantifier-free L-formulas ϕ(x, b)
whose free variables are among x and b is from B. Whereas we require x to
be a subsequence of z, there are no limitations on the length of the parameter
sequence b. By looking at the subsets of M lg(x) they define, we can construe
QFx(B) as a boolean algebra. Let Sx(B) denote its associated Stone space,
i.e., the set of quantifier-free x-types over B that decide each ϕ ∈ QFx(B).
As usual, each of the Stone spaces Sx(B) are compact, Hausdorff, and totally
disconnected when topologized by positing that the sets {Uϕ(x,b) : ϕ(x, b) ∈
QFx(B)}, where Uϕ(x,b) = {p ∈ Sx(B) : ϕ(x, b) ∈ p}, form a basis. Moreover,
because L is finite relational, it follows that each Sx(B) is finite and every
p ∈ Sx(B) is determined by a single ϕ(x, b) ∈ p whenever B is finite.

Definition 2.2. Fix a non-empty x ⊆ z, a subset B ⊆M and an integer m.
An x-type p ∈ Sx(B) supports an m-array if there is a pairwise disjoint
set {di : i < m} of (distinct) realizations of p in M . p supports an infinite
array if M contains an infinite, pairwise disjoint set of realizations of p. For
each finite D ⊆ M , let Nx,m(D) be the (finite) number of p ∈ Sx(D) that
support an m-array.

The following definition is central to this paper, and forms the connection
with [4]. A local formulation, which relaxes the restriction on the language
is given in Section 7.

Definition 2.3. A structure M in a finite, relational language has uniformly
bounded arrays if there is an integer m such that for every non-empty x ⊆ z,
there is an integer N such that Nx,m(D) ≤ N for all finite D ⊆ M . When
such an N exists, we let Narr

x,m denote the smallest possible such N .

It is easily seen that the properties described above are elementary. In
particular, if m and the (finite) sequence 〈Narr

x,m : x ⊆ z〉 witness that M has
uniformly bounded arrays, then the same m and sequence 〈Narr

x,m : x ⊆ z〉
witness that anyM ′ elementarily equivalent toM also has uniformly bounded
arrays. Because of this, we say that a complete theory T in a finite, relational
language has uniformly bounded arrays if some (equivalently all) models M
of T have uniformly bounded arrays.
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3 Supportive and array isolating types

Throughout this and the next few sections, fix a complete theory T in a
finite, relational language L. Also fix an ℵ1-saturated model M of T , which
is a ‘monster model’ in the sense that all sets of parameters are chosen from
M.

Definition 3.1. For x a subsequence of z and B countable, Suppx(B) is
the set of all p ∈ Sx(B) that support an infinite array. Let Supp(B) be the
disjoint union of the spaces Sx(B) for all subsequences x ⊆ z.

It is easily seen by compactness that if B is countable and p ∈ Sx(B) \
Suppx(B), then there is a number m and a formula θ(x, b) ∈ p that does not
support an m-array. It follows from this that Suppx(B) is a closed, hence
compact subspace of Sx(B). If we endow Supp(B) with the disjoint union
topology (i.e., U ⊆ Supp(B) is open if and only if (U ∩ Suppx(B)) is open in
Sx(B) for every x ⊆ z) then Supp(B) is compact as well.

Definition 3.2. Let B be any countable set. A tuple c is generic over B if
tp(c/B) supports an infinite array.

The following Lemma shows that every non-algebraic type has a maximal
‘component’ that supports an infinite array.

Lemma 3.3. Suppose B is countable and consider an arbitrary type p =
tp(c/B), with free variables among x ⊆ z, that has infinitely many solutions
in M, but does not support an infinite array. Then there is a non-empty
subsequence xu ( x such that

1. (c \ cu) is generic over Bcu; and

2. some formula δ(xu) ∈ tp(cu/B) has only finitely many solutions in
Mlg(xu).

Proof. As notation, a ∆-system in p consists of a (possibly empty)
subsequence xu of x, a root r ∈ Mlg(xu), and an infinite set A = {ai : i ∈ ω}
of distinct realizations of p satisfying:

• For all i ∈ ω, the restriction (ai)u = r; and

• For distinct i, j the sets (ai \ r) ∩ (aj \ r) = ∅.
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The ∆-system lemma assures us that every infinite set C of realizations of p
contains a ∆-system. Among all ∆-systems in p, choose xu, r, and A = {ai :
i ∈ ω} so that lg(xu) is minimized. As tp(ai/B) = tp(c/B) for every i ∈ ω,
it follows that tp(r/B) = tp(cu/B) and tp((ai \ r)/Br) is constant [Why?
θ(xv, r, b) ∈ tp((ai \ r)/Br) if and only if θ(xv, cu, b) ∈ tp((c \ cu)/Bcu).]
Thus, the family {(ai \ r) : i ∈ ω} witnesses that tp((a0 \ r)/Br) supports
an infinite array. So, as tp(a0/B) = tp(c/B), it follows that tp((c \ cu)/Bcu)
supports an infinite array as well.

Working towards (2), let q(xu) := tp(cu/B). If q had infinitely many
solutions in Mlg(xu), then arguing as above, we would get a ∆-system of
realizations of q with root a proper subsequence of xu, contradicting our
choice of xu in (1). Hence q(xu) has only finitely many solutions in Mlg(xu).
As M is ℵ1-saturated, the existence of a formula δ(xu) ∈ q with finitely many
solutions follows by compactness.

When our base set is a model, generic sequences are easily identified.

Lemma 3.4. If M � M is countable, lg(c) ≤ lg(z), and c ∩M = ∅, then
tp(c/M) is generic.

Proof. This is immediate by Lemma 3.3 since M is algebraically closed
in M.

Next, we explore extensions of types p ∈ Supp(B). By compactness, it
is easily seen that whenever B ⊆ B′ are countable, then every p ∈ Supp(B)
has an extension to some q ∈ Supp(B′). Abusing notation somewhat, let
Supp(M) denote the set of global types with the property that every re-
striction to a countable set supports an infinite array. An easy compactness
argument shows that every p ∈ Supp(B) has a ‘global extension’ to some
p ∈ Supp(M). In general, a type p ∈ Supp(B) has many such global exten-
sions, but we focus on when this is unique.

Definition 3.5. A formula ϕ(x, e) is array isolating if there is exactly one
global type p ∈ Suppx(M) with ϕ(x, e) ∈ p. Call a global type p ∈ Suppx(M)
array isolated if it contains some array isolating formula. Let AIx(M) denote
the set of array isolated global x-types and let AI(M) be the disjoint union
of AIx(M) over all subsequences x ⊆ z. For p ∈ AI(M), p|B denotes the
restriction of p to a type in Supp(B).

Definition 3.6. Say that p ∈ AIx(M) is based on B if p∩QFx(B) contains an
array isolating formula ϕ(x, e), the interpretation cM ∈ B for every constant
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symbol, and, moreover there is an infinite array {ai : i ∈ ω} ⊆ Blg(x) of
realizations of ϕ(x, e).

Clearly, if p is based on B, then it is also based on any B′ ⊇ B. If B is
a model, then the second and third clauses are redundant, that is:

Lemma 3.7. If M � M, p ∈ AIx(M) and p ∩ QFx(M) contains an array
isolating formula ϕ(x, e), then p is based on M .

Proof. As M �M, every cM ∈M . Now, fix an array isolating formula
ϕ(x, e) ∈ p ∩QFx(M) and we recursively construct an infinite array of real-
izations of ϕ(x, e) inside M as follows. First, let B0 = e and let p0 = p|B0.
As the language L and B0 are finite, p0 is isolated by a formula over B0. As
M � M, choose a realization a0 of p0 inside M . Then put B1 = B0 ∪ {a0},
let p1 = p|B1, and continue for ω steps.

There is a tight analogy between almost isolated types p based on B and
strong types over B in a stable theory, but in general they are not equivalent.
Indeed, as we are restricting to quantifier free types, a typical restriction p|B
is not even a complete type with respect to formulas with quantifiers. We
show that every p ∈ AI(M) is B-definable for any B on which it is based.

Lemma 3.8. Suppose ϕ(x, e) is an array isolating formula and θ(x, y) ∈
QFxy(∅). There is an integer m = m(ϕ(x, e), θ) such that for all d ∈ Mlg(y),

exactly one of ϕ(x, e) ∧ θ(x, d) and ϕ(x, e) ∧ ¬θ(x, d) admits an m-array.

Proof. As ϕ(x, e) admits an infinite array, at least one of the two for-
mulas will as well. However, if such an m did not exist, then for each m there
would be a tuple dm such that both ϕ(x, e)∧θ(x, dm) and ϕ(x, e)∧¬θ(x, dm)
admit an m-array. Thus, by the saturation of M, there would be a tuple d

∗

such that both ϕ(x, e)∧ θ(x, d∗) and ϕ(x, e)∧¬θ(x, d∗) admit infinite arrays,
contradicting ϕ(x, e) being array isolating.

Definition 3.9. Fix any p ∈ AIx(M) and any set B on which it is based.
Choose an array isolating formula ϕ(x, e) ∈ p∩QFx(B) and an infinite array
{ai : i ∈ ω} ⊆ Blg(x) of realizations of ϕ(x, e). For any θ(x, y) ∈ QFxy(∅) let

dpxθ(x, y) :=
∨

s∈(2m
m )

∧
i∈s

θ(ai, y)

where m = m(ϕ(x, e), θ) is chosen by Lemma 3.8.
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Visibly, dpxθ(x, y) ∈ QFy(B). Its relationship to θ(x, y) and p is ex-
plained by the following Lemma.

Lemma 3.10. Suppose p ∈ AI(M) is based on a countable set B and ϕ(x, e)
and {ai : i ∈ ω} are chosen as in Definition 3.9. The following are equivalent
for any θ(x, y) ∈ QFxy(∅) and any d ∈Mlg(y):

1. M |= dpxθ(x, d);

2. θ(x, d) ∈ p;

3. For all countable B′, p|B′ ∪ {θ(x, d)} supports an infinite array; and

4. The partial type p|B ∪ {θ(x, d)} supports an array of length m =
m(ϕ(x, e), θ).

Proof. (1) ⇒ (2): As M |= dpxθ(x, d), some m-element subset of {ai :
i < 2m} is an m-array of realizations of ϕ(x, e) ∧ θ(x, d). By choice of
m, Lemma 3.8 implies that ϕ(x, e) ∧ θ(x, d) supports an infinite array, so
θ(x, d) ∈ p.

(2) ⇒ (3): Choose any countable B′. If θ(x, d) ∈ p, then as p|B′ ∪
{θ(x, d)} is a countable subset of p, it supports an infinite array.

(3)⇒ (4): Trivial.
(4)⇒ (1): Assume that M |= ¬dpxθ(x, d). Then some m-element subset

of {ai : i < 2m} witnesses that ϕ(x, e) ∧ ¬θ(x, d) supports an m-array.
By Lemma 3.8, ϕ(x, e) ∧ θ(x, d) cannot support an m-array. Consequently
p|B ∪ {θ(x, d)} cannot support an m-array (and thus cannot support an
infinite array).

4 Free products of array isolated types

Throughout this section, T is a complete theory in a finite, relational lan-
guage and M is an ℵ1-saturated model, from which we take our parameters.

In this section we describe how to construct a ‘free join’ of array iso-
lated types. Suppose x, y are disjoint, non-empty subsequences of z, p(x) ∈
AIx(M), and q(y) ∈ AIy(M). We show that there is a well-defined r(x, y) ∈
Suppxy(M) constructed from this data. We begin with lemmas that unpack
our definitions.
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Lemma 4.1. Suppose p(x),q(y) are as above and B is a countable set on
which both p and q are based. For any θ(x, y, b) ∈ QFxy(B) and any c
realizing p|B,

θ(c, y, b) ∈ q|Bc if and only if dqθ(x, y, b) ∈ p|B

Proof. First, assume θ(c, y, b) ∈ q|Bc. Then q|B ∪ {θ(c, y, b} ⊆ q,
hence it supports an infinite array. By Lemma 3.10 applied to θ(c, y, b) (i.e.,
taking d := cb),

M |= dqθ(c, y, b)

Taking w to be a sequence of variables for b, since dqyθ(x, y, w) ∈ QFxw(B),
b is from B, and c realizes p|B, we conclude that dqyθ(x, y, b) ∈ p|B.

The converse is dual, using ¬θ in place of θ.

Lemma 4.2. Suppose p(x),q(y) are as above and B is a countable set on
which both p and q are based. For any θ(x, y, b) ∈ QFxy(B) and any c, c′

realizing p|B, θ(c, y, b) ∈ q|Bc if and only if θ(c′, y, b) ∈ q|Bc′.

Proof. By Lemma 4.1, each statement is equivalent to dqθ(x, y, b) ∈
p|B, which does not depend on our choice of c.

Extending this,

Lemma 4.3. Suppose p(x),q(y) are as above and B is a countable set on
which both p and q are based. For any θ(x, y, b) ∈ QFxy(B) and any c, c′

realizing p|B, for any d realizing q|Bc and d
′

realizing q|Bc′, the following
three notions are equivalent:

1. M |= θ(c, d, b);

2. M |= dpx[dqyθ(x, y, b)]; and

3. M |= θ(c′, d
′
, b).

Proof. Because of the duality in the statements, it suffices to prove
(1) ⇔ (2). First, assume (1) holds. As d realizes q|Bc, we infer θ(c, y, b) ∈
q. So, by Lemma 3.10, M |= dqyθ(c, y, b). As dqyθ(x, y, b) ∈ QFxy(B)

and c realizes p|B, we conclude that dqyθ(x, y, b) ∈ p and hence M |=
dpx[dqyθ(x, y, b)]. Showing that (¬1) implies (¬2) is dual, using ¬θ in place
of θ.

We now define the free product of array supporting global types.
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Definition 4.4. Suppose x, y are disjoint subsequences of z, p ∈ AIx(M)
and q ∈ AIy(M). Then the free product r = p× q is defined as

r(x, y) := {θ(x, y, b) ∈ QFxy(M) : M |= dpx[dqyθ(x, y, b)]}

Because of Lemma 4.3, r(x, y) is also equal to the set of all θ(x, y, b) ∈
QFxy(M) such that for some/every B on which both p and q are based and

b is from B, for some/every c realizing p|B and for some/every d realizing
q|Bc we have M |= θ(c, d, b). It is easily seen from this characterization that
r(x, y) ∈ Suppxy(M).

Next, we show that the free join is symmetric. We begin with a Lemma.

Lemma 4.5. Suppose x, y are disjoint subsequences of z, p(x) ∈ AIx(M),
q(y) ∈ AIy(M). Then for every countable set B on which both types are based,
for every c realizing p|B, d realizing q|B, and for every θ(x, y, b) ∈ QFxy(B)

such that M |= θ(c, d, b),

θ(x, d, b) ∈ p|Bd if and only if θ(c, y, b) ∈ q|Bc

Proof. Assume by way of contradiction that θ(x, d, b) ∈ p|Bd, but
θ(c, y, b) 6∈ q|Bc, with the other direction being dual.

Write θ as θ(x, y, w). As B is based on both p and q, choose array
isolating formulas ϕ(x, e) ∈ QFx(B) and ψ(y, e′) ∈ QFy(B) for p and q, re-
spectively. Let m = max{m(ϕ(x, e), θ(x; yw)),m(ψ(y, e′), θ(y;xw))}. (Note
the different partitions of θ.)

As B is countable, choose infinite arrays {ci : i ∈ ω} and {dj : j ∈ ω} for
p|B and q|B, respectively. By Lemma 4.1 we have that θ(x, dj, b) ∈ p|Bdj
for each j and that θ(ci, y, b) 6∈ q|Bci for each i. By passing to infinite
subsequences, we may additionally assume these sets are pairwise disjoint
(i.e., ci ∩ dj = ∅ for all i, j). Choose a number K >> m. Form a finite,
bipartite graph with universe C ∪D, where C = {ci : i < K} and D = {dj :
j < K} with an edge E(ci, dj) if and only if M |= θ(ci, dj, b). We will obtain
a contradiction by counting the number of edges in two different ways.

On one hand, because θ(ci, y, b) 6∈ q|Bci, q|B ∪ {θ(ci, y, b)} does not
support an infinite array for each ci. By our choice of m, it cannot support
an array of length m either. Because any m-element subset of D is an array
of length m, we conclude that for every ci, there are fewer than m many dj
such that M |= θ(ci, dj). Thus, the number of edges of the graph is bounded
above by Km. On the other hand, for any dj, as p|B ∪{θ(x, dj, b)} supports
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an infinite array, q|B ∪{¬θ(x, dj, b)} cannot support an infinite array, hence
cannot support an array of size m. Thus, the edge-valence of each dj is at
least (K −m), implying that our graph has at least K(K −m) edges. As K
is much larger than m, this is a contradiction.

Corollary 4.6. Suppose x, y are disjoint subsequences of z, p ∈ AIx(M), and
q ∈ AIy(M). Then p×q = q×p. That is, for any set B on which both p,q
are based and for any θ(x, y, w) ∈ QFxyw(∅), the formulas dpx[dqyθ(x, y, w)]
and dqy[dpxθ(x, y, w)] in QFw(B) are equivalent.

Proof. Choose any θ(x, y, b) ∈ p × q with b ∈ Mlg(w). Choose any
countable set B containing b on which both p and q are based. Choose c
realizing p|B and d realizing q|Bc. By the equivalent definition of p × q,
(c, d) realizes p×q, hence M |= θ(c, d, b). Thus, by Lemma 4.5, c also realizes
p|Bd. Hence (c, d) also realizes q× p, so θ(x, y, b) ∈ q× p as well.

5 Finitely many mutually algebraic types sup-

porting arrays

We continue our assumption that M is an ℵ1-saturated model of a complete
theory T in a finite, relational language. In this section, we add mutual
algebraicity to the discussion of supportive and array isolating types.

Definition 5.1. For x ⊆ z non-empty, a global, supportive type p ∈ Suppx(M)
is quantifier-free mutually algebraic (QMA) if p contains a mutually algebraic
formula ϕ(x) ∈ QFx(M). Let QMAx(M) denote the set of QMA types in
Suppx(M). Let QMA(M) be the (finite) disjoint union of the sets QMAx(M).

The goal of this section will be to deduce consequences from QMA(M)
being finite. We begin with two finiteness lemmas.

Lemma 5.2. Fix x ⊆ z and assume that Suppx(M) is finite. Then Suppx(M) =
AIx(M) and, moreover, every p ∈ AIx(M) is based on every M �M.

Proof. As Suppx(M) is always a closed subspace of Sx(M), it is com-
pact. Thus, if it is finite, every p ∈ Suppx(M) is isolated. For the moreover
clause, write Suppx(M) = {p1, . . . ,pn} and choose array isolating formulas
ϕi(x, ei) for each pi. By repeated use of Lemma 3.8, let m∗ be the maximum
of all m(ϕi(x, ei), R(x, y)) among all pi ∈ Suppx(M) and all atomic R ∈ L.
Then M is a model of the sentence
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∃w1 . . . ∃wn[ for all atomic R ∈ L, for all z, and for all 1 ≤ i ≤ n,
exactly one of ϕi(x,wi)∧R(x, z) and ϕi(x,wi)∧¬R(x, z) supports
an m∗-array].

Thus, any M � M also models this sentence. If e∗1, . . . e
∗
n are witnesses from

M , then it is easily checked that ϕi(x, ei) array isolates pi for each i. In light
of Lemma 3.7, it follows that each pi is based on M .

Lemma 5.3. If QMAx(M) is finite, then every p ∈ QMAx(M) is array
isolated, i.e., p ∈ AIx(M).

Proof. Fix any p ∈ QMAx(M). Choose a mutually algebraic ϕ0(x, e0) ∈
p. For each q ∈ QMAx(M) distinct from p, choose a formula ϕq(x, eq) ∈
p \ q. Then the formula ϕ0(x, e0) ∧

∧
q 6=p ϕq(x, eq) array isolates p.

Definition 5.4. Fix any non-empty x ⊆ z. A partition P = {x1, . . . , xr} of
x satisfies (1) each xi non-empty and (2) Every x ∈ x is contained in exactly
one xi. For w ⊆ {1, . . . , r}, let xw be the subsequence of x with universe⋃
{xi : i ∈ w}.

For c ∈ (M)lg(x), a partition P of x naturally induces a partition {c1, . . . , cr}
of c. For w ⊆ {1, . . . , r}, cw is the subsequence of c corresponding to xw.

Definition 5.5. Fix any x ⊆ z, any countable M � M, and c ∈ (M \
M)lg(x). A maximal mutually algebraic decomposition of c over M consists of
a partition P = {x1, . . . , xr} of x for which the induced partition {c1, . . . , cr}
of c satisfies the following for each i ∈ {1, . . . , r}:

• ci realizes a mutually algebraic formula ϕ(xi) ∈ QFxi
(M); but

• For any proper extension xi ( u ⊆ x, the subsequence d of c induced
by u does not realize any mutually algebraic formula ψ(u) ∈ QFu(M).

Lemma 5.6. For any x ⊆ z and every countable M � M, every c ∈ (M \
M)lg(x) admits a unique maximal mutually algebraic decomposition over M .

Proof. First, by Lemma 3.4, both c and any subsequence of c are generic
over M . Next, as every formula ϕ(x) in one free variable is mutually al-
gebraic, every singleton c ∈ c realizes a mutually algebraic formula. For
each x ∈ x, choose a subsequence xi of x containing x such that ci realizes
a mutually algebraic formula in QFxi

(M) and is maximal i.e., there is no

11



proper extension x′ ) xi for which c′ realizes a mutually algebraic formula
in QFx′(M). Clearly, {x1, . . . , xr} covers x. The fact that it is a partition
follows from the fact that if xi, xj are not disjoint and ϕ(xi), ψ(xj) are each
mutually algebraic, then their conjunction (ϕ∧ψ)(xixj) is mutually algebraic
as well (see e.g. Lemma 2.4(6) of [2]).

It is easily checked that if {c1, . . . , cr} is a maximal mutually algebraic
decomposition of c over M , then for any w ⊆ {1, . . . , r}, the subset {ci : i ∈
w} is a maximal, mutually algebraic decomposition of cw over M .

We are now able to state and prove the following.

Proposition 5.7. Suppose that QMA(M) is finite. Then, for every subse-
quence x ⊆ z, every p ∈ Suppx(M) is equal to a free product q = p1×· · ·×pr

of types from QMAx(M). In particular, each Suppx(M) is finite.

Proof. We prove this by induction on x, i.e., we assume the Proposition
holds for all proper subsequences x′ of x and prove the result for x. To base
the induction, first note that if x ∈ z is a singleton, then as every formula
ϕ(x) is mutually algebraic, every q ∈ Suppx(M) is also in QMAx(M), which
we assumed was finite.

Now, suppose x is a subsequence of z, lg(x) ≥ 2, and the Proposition
holds for every proper subsequence x′ of x. In particular, as Suppx′(M) is
finite, each q ∈ Suppx′(M) contains an array isolating formula by Lemma 5.2.
Choose a finite set D such that for every subsequence x′ of x, QFx′(D)
contains an array isolating formula for every p ∈ Suppx′(M) and a mutually
algebraic formula for every q ∈ QMAx′ . Next, choose a countable M � M
containing D. Note that by Lemma 5.2 again, every q ∈ Suppx′(M) is based
on M for every subsequence x′ of x.

Choose any q∗ ∈ Suppx(M). Towards showing that q∗ is a free product of
types from QMAx(M), choose any c ∈ (M \M)lg(x) realizing q∗|M . Suppose
the partition P = {x1, . . . , xr} of x yields the maximal, mutually algebraic
decomposition c1ˆ . . . ˆcr of c over M .

There are now two cases. First, if r = 1, then tp(c/M) contains a mu-
tually algebraic formula, so q∗ ∈ QMAx(M) and we are finished. So as-
sume r ≥ 2. As notation, for each 1 ≤ j ≤ r, let wj be the subsequence
x1 . . . xj−1xj+1 . . . xr of x and let dj be the corresponding subsequence of c.
As each dj is a proper subsequence of c, our inductive hypothesis, along with
our choices of D and M imply that tp(dj/M) contains an array isolating for-
mula. Let qj be the (unique) global extension of tp(dj/M) to AIwj

(M). By
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our inductive hypothesis again, each qj = (p1× . . .pj−1×pj+1× . . .pr). As
each pj is also array isolated, by iterating Lemma 4.5 finitely often it follows
that there is a unique supportive type r∗(x) which is equal to qj(wj)×pj(xj)
for every 1 ≤ j ≤ r.

In light of the characterization of free products following Definition 4.4,
in order to conclude that q∗ = qr×pr = r∗, it suffices to prove the following
Claim.

Claim. dr is generic over Mcr.

Assume this were not the case. We obtain a contradiction by show-
ing that the whole of tp(c1, . . . , cr/M) contains a mutually algebraic for-
mula ϕ(x). By Lemma 3.3, choose a maximal subsequence cu of dr and
δr(xu, cr, br) ∈ tp(cu/Mcr) with only finitely many solutions. As tp(ci/M) is
mutually algebraic for each i, it follows from the maximality of u that there is
a non-empty subset w ⊆ {1, . . . , r − 1} such that cu = cw. To ease notation,
say w = {1, . . . , s} for some s ≤ r− 1. We argue that s = r− 1. If this were
not the case, then {c1, . . . , cs, cr} would be a maximal mutually algebraic
decomposition over M of the subsequence c1ˆ . . . ˆcsˆcr whose corresponding
variables x1 . . . xsxr form a proper subsequence of x. Thus, by our inductive
hypothesis, tp(c1 . . . cscr/M) would equal (p1 × · · · × ps × pr)|M , which is
contradicted by the formula δr(x1, . . . , xs, xr, br) ∈ tp(c1 . . . cscr/M). Thus,
we conclude that s = r − 1. Hence, δr(wr, cr, br) has only finitely many
solutions.

Next, choose any j < r. Now the presence of the formula δr implies that
q∗ 6= r∗, hence q∗ 6= qj × pj. From this, it follows that dj is not generic over
Mcj. So, arguing just as above, but replacing r by j throughout, we conclude
there is a formula δj(x, bj) ∈ tp(c/M) for which δj(wj; cjbj) has only finitely
many solutions.

Thus, if we choose a mutually algebraic formula γj ∈ tp(cj/M) for each
j ≤ r, we conclude that the formula

ϕ(x1, . . . , xr, b1 . . . br) =
∧
j≤r

(
γj(xj) ∧ δj(wj, xj, bj)

)
is mutually algebraic with free variables x and is in tp(c/M). This contradicts
our assumption that tp(c/M) was not mutually algebraic. This completes
the proof of the Claim as well as the Proposition.
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Conclusion 5.8. If QMA(M) is finite, then so is Supp(M). Moreover, for
any x ⊆ z and c ∈ (M \M)lg(x), then tp(c/M) is determined by the maxi-
mal mutually algebraic partition P = {x1, . . . , xr} and the corresponding set
{p1, . . . ,pr} of QMAxi

(M) types.

6 Mutual algebraicity and unbounded arrays

The whole of this section is devoted to the statement and proof of Theo-
rem 6.1. It can be construed as a kind of ‘Ryll-Nardzewski theorem’ for
Stone spaces of quantifier-free types.

Theorem 6.1. Suppose T is a complete theory in a finite, relational lan-
guage, all of whose atomic formulas have free variables among z, and let M
be an ℵ1-saturated model of T . The following are equivalent.

1. T has uniformly bounded arrays;

2. For all subsequences x ⊆ z, Suppx(M) is finite;

3. For all subsequences x ⊆ z, every global supportive type p ∈ Suppx(M)
is array isolated;

4. Whenever M � N are models of T , for all subsequences x ⊆ z, there
are only finitely many types in Sx(M) realized in (N \M)lg(x);

5. For all models M and all subsequences x ⊆ z, only finitely many mutu-
ally algebraic, quantifier free types in Sx(M) support an infinite array;
and

6. T is mutually algebraic.

Proof. We begin by showing that (2)⇔ (3)⇔ (4). Fix any non-empty
subsequence x ⊆ z. The key observation for showing (2) ⇔ (3) is that if
X is any compact, Hausdorff space, then X is finite if and only if every
element a ∈ X is isolated. Suppose that (2) holds. To establish (3), note
that Suppx(M) as a subspace of Sx(M), the Stone space of all quantifier free
types is closed, and hence compact. As (2) implies it is finite as well, every
p ∈ Suppx(M) must be isolated in the subspace, hence array isolated.
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Verifying that (3) ⇒ (2) uses the converse of this. Fix x ⊆ z. Applying
(3) to the model M yields that every element of Suppx(M) is isolated. As
Suppx(M) is compact and Hausdorff, it must be finite.

(2) ⇒ (4) is easy. Assume (2). It suffices to prove (4) for all countable
M � N . As M is ℵ1-saturated, we may assume N � M. But now, by
Lemma 3.4, for any c ∈ (N \M)lg(x), tp(c/M) supports an infinite array. As
any p ∈ Suppx(M) extends to some p ∈ Supp(M), there are only finitely
many such types.

Next, suppose (2) fails. Choose x ⊆ z and a countable, infinite Y ⊆
Suppx(M). For each pair p 6= q, choose a formula ϕpq(x, epq) ∈ p\q. Choose
a countable M � M containing {epq : p 6= q ∈ Y }. Thus, {p|M : p ∈ Y }
is a countably infinite set of types, each of which support an infinite array.
As M is ℵ1-saturated, each such p|M is realized by some c ∈ Mlg(x). That
c ∩M = ∅ follows from the fact that p|M supports an infinite array.

Continuing on, that (2)⇒ (5) is similar to the proof of (2)⇒ (3), using
the fact that whenever M � M, every p ∈ QMA(M) supports an infinite
array, hence extends to a global type p ∈ Supp(M).

(5)⇒ (2) is immediate from Conclusion 5.8.
(2)⇒ (1). By (2), for each x ⊆ z, let N(x) := |Suppx(M)|. As (2)⇒ (3),

every p ∈ Supp(M) is array isolated. For each x ⊆ z and each p ∈ Suppx(M),
choose an array isolating formula ϕp(x, ep) ∈ p and let D ⊆M be finite and
contain all ep for all p ∈ Supp(M). It is easily seen that for every x ⊆ z and
every countable D ⊆ B ⊆ M, Sx(B) has exactly N(x) types that support
an infinite array. Moreover, each such q ∈ Suppx(B) has a unique restriction
q|D ∈ Suppx(D) and a unique extension q ∈ Suppx(M).

Towards finding an appropriate m, fix x ⊆ z and partition each atomic
R(z) ∈ L as R(z, w). For each p ∈ Suppx(M) with array isolating for-
mula ϕp(x, ep) ∈ p, let m(p, x) be the maximum of the 2|L| numbers
m(ϕp(x, ep),±R(x,w)) obtained by Lemma 3.8. That is, apply the Lemma
2|L| times, once for each R ∈ L, and once for each ¬R for R ∈ L.

The point is that if B is countable, D ⊆ B ⊆M, and q ∈ Sx(B) contains
some ϕ(x, ep) and supports an m(p, x)-array, then for every R(x, b), R(x, b) ∈
q if and only if ϕp(x, ep) ∧ R(x, b) supports an m(p, x)-array if and only if
ϕp(x, ep)∧R(x, b) supports an infinite array if and only if R(x, b) ∈ p. Thus,
q ⊆ p.

Let m := max{m(p, x) : x ⊆ z,p ∈ Suppx(M)}. Combining the above,
we see that for any countable B ⊇ D and any x ⊆ z, exactly N(x) types
in Sx(B) support m-arrays. Thus, M (and hence T by elementarily) has
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uniformly bounded arrays.
(1)⇒ (2) is also easy. Assume T has uniformly bounded arrays. Choose

m and 〈Narr
x,m : x ⊆ z〉 from the definition. To establish (2), we claim that

|Suppx(M)| ≤ Narr
x,m for each x ⊆ z. To see this, fix x ⊆ z and assume by

way of contradiction there is a finite Y ⊆ Suppx(M) with |Y | > Narr
x,m. For

each pair p 6= q from Y , choose some ϕpq(x, epq) ∈ p \ q and let D ⊆ M
be finite, containing all these epq. Thus, the set {p|D : p ∈ Y } are distinct
elements of Sx(D). As each restriction p|D supports an infinite array, each
supports an m-array, contradicting our definition of Narr

x,m.
(6)⇒ (5): Suppose T is mutually algebraic. Then by Theorem 3.3 of [3],

T is superstable, has nfcp, and moreover, any expansion of any model of T
by unary predicates also has an nfcp theory. Assume by way of contradiction
there are infinitely many distinct {pi : i ∈ ω} ⊆ QMAx(M). Each of these
types contains a mutually algebraic formula ϕi(x, ei). We first use the fact
that T has nfcp to show that there is a finite bound on the complexity of
ϕi that works for an infinite subset of these types. Specifically, following
Shelah’s notation let ∆ = {R(x,w) : R ∈ L} ∪ {¬R(x,w) : R ∈ L} ∪ {=
, 6=}. In Shelah’s notation, a mutually algebraic formula ϕ(x, e) satisfies
R(ϕ(x, e),∆,ℵ0) ≤ 1. Thus, as in the proof of (3) ⇒ (5) of Shelah’s ‘nfcp
theorem’ (II, Theorem 4.4 of [5]) there is some number k and a fixed

θ(x, u) :=
k∧

j=1

δj(x,wj)

with each δj ∈ ∆, an infinite I ⊆ ω, and ei ∈ Mlg(u) for each i ∈ I so that
each θ(x, ei) ∈ pi and is mutually algebraic. By reindexing, we may assume
I = ω, hence every pi contains a mutually algebraic formula of this form.

Fix a countable M � M containing the set of parameters {ei : i ∈ ω}.
For each i ∈ ω, choose an uncountable array Ei of realizations of pi|M .
Among these, as T is superstable, choose subsets Di ⊆ Ei with |Di| = i such
that the union D∗ =

⋃
{Di : i ∈ ω} is a set of independent tuples over M

(independence in the usual sense of non-forking). In particular, it follows
that every di ∈ Di is disjoint from each dj ∈ Dj whenever i 6= j. In fact,
dj ∩ acl(Mdi) = ∅ for all such di, dj. Let H =

⋃⋃
{Di : i ∈ ω} (i.e., H ⊆M1

and is the smallest set contains every coordinate of every d occurring in some
Di). For each i ∈ ω, let Ki consist of a single element from each d ∈ Di, i.e.,
Ki is an i-element subset of M and let K∗ =

⋃
{Ki : i ∈ ω}.
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Next, we expand M by adding three new unary predicates. Let L′ =
L ∪ {U, V,W} and let M′ be the expansion of M defined by interpreting
UM′

= M and V M′
= H, and WM′

= K∗. We will obtain a contradiction by
showing that in M′, the natural partition of H is M′-definable, thereby giving
a equivalence relation E on W with arbitrarily large finite classes, thereby
contradicting Th(M′) having nfcp.

To accomplish this, we first can define the ‘mates’ d ⊆ V of each d ∈ W
by by the definable ∃u[

∧
u∈u U(u)∧θ(x, u)]. As θ(x, u) is always mutually al-

gebraic, that this defines the correct set follows by independence over M . As
notation, for each d ∈ W , let mate(d) denote the tuple d from V containing
d. Now, define an equivalence relation E on W by

E(x, y) := ∀w ∈M lg(w)
∧
R∈L

R(mate(x), w)↔ R(mate(y), w)

Remark 6.2. The implication (6) ⇒ (5) above really relies on counting
quantifier-free mutually algebraic types that support infinite arrays. As an
example, Th(Z, S) is mutually algebraic, but there are infinitely many mutu-
ally algebraic formulas ϕn(x, y), each of which support infinite arrays. Take
ϕn(x, y) := ∃z0 . . . ∃zn[(x = z0) ∧ (y = zn) ∧

∧n−1
i=0 S(zn, zn+1)].

(2–5)⇒ (6): As we are assuming QMA(M) is finite, we adopt the nota-
tion of Section 5. Specifically, there is a fixed finite set D such that, for each
p ∈ QMAx(M), an array isolating formula as well as a mutually algebraic for-
mula ϕ(x) ∈ p are contained in QFx(D) and a fixed countable M �M with
D ⊆M . As notation, for each of the (finitely many) subsequences x ⊆ z and
each of the (finitely many) p ∈ QMAx, choose a formula ϕp(x) ∈ QFx(D)
that is both mutually algebraic and array isolates p.

We borrow a definition from [2].

Definition 6.3. Fix a non-empty x ⊆ z. Two formulas θ(x), ψ(x) from
QFx(M) are equivalent off M if M |= θ(c)↔ ψ(c) for all c ∈ (M \M)lg(x).

Claim. For every non-empty x ⊆ z and for every θ(x) ∈ QFx(M), there
is θ∗(x) ∈ QFx(M) that is a boolean combination of mutually algebraic
formulas equivalent to θ(x) off M .

Proof. For each x ⊆ z and each c ∈ (M \M)lg(x), choose a maximal
mutually algebraic decomposition c = c1ˆ . . . ˆcr generated by the partition
P = {x1, . . . , xr} of x and, as notation, let pi be the unique array supporting
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extension of tp(ci/M) for each i. Then, by Conclusion 5.8, tp(c/M) (and
also its unique extension to AIx(M) is determined by the formula∧

i∈[r]

ϕpi
(xi) ∧

∧
xI ,q∈QMAxI

∧
¬ϕq(xI)

where, in the second conjunct, we are all over all unions of two or more
subsequences {xi : i ∈ [r]}. Note that each of these formulas is visibly a
boolean combination of mutually algebraic formulas over in QF(D). But
now, off M , every formula θ(x) will be a (finite) disjunction of some of these
formulas, so we finish.

With the Claim in hand, what follows is almost identical to the proof of
Proposition 4.1 of [2], but we include it here for completeness.

We argue by induction on lg(x) that for every non-empty x ⊆ z, every
θ(x) ∈ QFx(M) is equivalent to a boolean combination of mutually algebraic
formulas from QFx(M). As R(z) ∈ QFz(M), this is sufficient. For lg(x) = 1
this is immediate, as every θ(x) ∈ QFx(M) is mutually algebraic. Now fix a
quantifier-free θ(x) with lg(x) ≥ 2. By the Claim, there is a boolean combi-
nation of mutually algebraic formulas ψ(x) ∈ QFx(M) that is equivalent to
θ(x) off M . Write x = xˆy with lg(x) = 1. By compactness there is a finite
set F ⊆M such that

θ(x, y)↔
∨
m∈F

(x = m ∧ θ(m, y)) ∨
∧
m∈F

(x 6= m ∧ ψ(x, y))

By our inductive hypothesis the formula on the right hand side is as required.

7 Identifying mutually algebraic structures and

theories in arbitrary languages

In this section, we let L be an arbitrary language.

Definition 7.1. For R(z) any atomic L-formula let LR := {R,=}, which is
visibly finite relational. Given an L-structure M , let MR denote the reduct
of M to an LR-structure.

The following definition should be compared with Definition 2.3.
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Definition 7.2. Given an atomic L-formula R(z) and an L-structure M , say
R has uniformly bounded arrays in M if the LR-structure MR has uniformly
bounded arrays (cf. Definition 2.3).

We use Theorem 6.1 to deduce local tests for mutual algebraicity without
regard to the size of the language, nor the completeness of the theory.

Theorem 7.3. The following are equivalent for an L-structure M in an
arbitrary language L:

1. M is mutually algebraic;

2. Every atomic R(z) has uniformly bounded arrays in M ;

3. For every atomic R(z), the reduct MR is mutually algebraic.

Proof. The equivalence of (2) and (3) follows by applying Theorem 6.1
to each of the reducts MR (using that LR is finite relational).

For (3)⇒ (1), in order to prove that M is mutually algebraic, by Theo-
rem 2.1, it suffices to prove that every atomic R(z) is equivalent to a boolean
combination of mutually algebraic formulas. Fix an atomic R(z). By (3) and
Theorem 2.1 applied to MR, R(z) is equivalent to a boolean combination of
quantifier-free mutually algebraic LR-formulas. As a mutually algebraic for-
mula in MR is also mutually algebraic in M , the result follows.

Finally, assume (1). To obtain (2), fix an atomic R(z). By Theo-
rem 2.1, choose a finite set {ϕ1(x1, e1), . . . , ϕk(xk, ek)} of mutually algebraic,
quantifier-free L-formulas to which R(z) is equivalent in M to some boolean
combination (so each xi is a subsequence of z). Expand L to L′, adding
new lg(xi)-ary relation symbols Ui and let M ′ be the definitional expansion
interpreting each Ui as ϕi(M, ei). Let L0 = {U1, . . . , Uk}, LR

0 = L0 ∪ {R},
and let M0,M

R
0 be the reducts of M ′ to L0 and LR

0 , respectively. Note that
M0 and MR

0 have the same quantifier-free definable sets, and that M and
MR

0 have identical reducts to LR-structures.
As each L0-atomic formula is mutually algebraic, it follows from The-

orem 2.7 of [3] that M0 is mutually algebraic. As L0 is finite relational,
it follows from Theorem 6.1 that M0 has uniformly bounded arrays. Since
M0 and MR

0 have the same quantifier-free definable sets, we conclude that
MR

0 also has uniformly bounded arrays. It follows that R(z) has uniformly
bounded arrays in MR

0 , so R(z) has uniformly bounded arrays in M as well.
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The following Corollary now follows easily. Clause 2 is a slight strength-
ening of Theorem 2.1.

Corollary 7.4. Let L be an arbitrary language.

1. The reduct of a mutually algebraic L-structure is mutually algebraic;

2. If M is mutually algebraic, then every atomic R(z) is equivalent to a
boolean combination of mutually algebraic, quantifier-free LR-formulas.

Proof. (1) Let M be any mutually algebraic L-structure, let L0 ⊆ L be
arbitrary, and let M0 be the reduct of M to L0. Fix any atomic R(z) ∈ L0.
Applying Theorem 7.3 to M gives MR mutually algebraic. As this holds
for all atomic R ∈ L0, a second application of Theorem 7.3 implies M0 is
mutually algebraic.

(2) is also by Theorem 7.3.

Finally, we consider incomplete theories. The following Corollary follows
immediately from Theorem 7.3, as by definition, an incomplete theory T is
mutually algebraic if and only if every model M |= T is mutually algebraic.

Corollary 7.5. A possibly incomplete theory T in an arbitrary language is
mutually algebraic if and only if for every M |= T , every atomic R(z) has
uniformly bounded arrays in M .
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