Uniformly bounded arrays and mutually algebraic structures

Michael C. Laskowski* University of Maryland Caroline A. Terry University of Maryland

July 5, 2018

Abstract

We define an easily verifiable notion of an atomic formula having uniformly bounded arrays in a structure M. We prove that if T is a complete L-theory, then T is mutually algebraic if and only if there is some model M of T for which every atomic formula has uniformly bounded arrays. Moreover, an incomplete theory T is mutually algebraic if and only if every atomic formula has uniformly bounded arrays in every model M of T.

1 Introduction

The notion of a mutually algebraic formula was introduced in [1], and the notions of mutually algebraic structures and theories were introduced in [3]. There, many properties were shown to be equivalent to mutual algebraicity, e.g., a structure M is mutually algebraic if and only if every expansion (M, A) by a unary predicate has the non-finite cover property (nfcp) and a complete theory T is mutually algebraic if and only if it is weakly minimal and trivial. Whereas these characterizations indicate the strength of the hypothesis, they do not lead to an easy verification that a specific structure is mutually algebraic. This paper is concerned with finding equivalents of mutual algebraicity, some of which are easily verifiable. Most notably, we introduce the

^{*}Partially supported by NSF grant DMS-1308546.

notion of a structure or a theory having uniformly bounded arrays and we prove that for structures M in a finite, relational language, M is mutually algebraic if and only if M has uniformly bounded arrays. This equivalence plays a key role in [4].

2 Preliminaries

Let M be any L-structure and let $\varphi(\overline{z})$ be any L(M)-formula. We say that $\varphi(\overline{z})$ is mutually algebraic if there is an integer k such that for any proper partition $\overline{z} = \overline{x} \hat{y}$ (i.e., each of $\overline{x}, \overline{y}$ are nonempty) $M \models \forall \overline{x} \exists^{\leq k} \overline{y} \varphi(\overline{x}, \overline{y})$. Then, following [3], a structure M is mutually algebraic if every L(M)-formula is equivalent to a boolean combination of mutually algebraic L(M)-formulas, and a theory T is mutually algebraic if every model of T is a mutually algebraic structure. The following Theorem, which has the advantage of looking only at atomic formulas, follows easily from two known results.

Theorem 2.1. Let M be any L-structure. Then M is mutually algebraic if and only if every atomic formula $R(\overline{z})$ is equivalent to a boolean combination of quantifier-free mutually algebraic L(M)-formulas.

Proof. First, assume M is mutually algebraic. The fact that every atomic $R(\overline{z})$ is equivalent to a boolean combination of quantifier-free mutually algebraic L(M)-formulas is the content of Proposition 4.1 of [2]. For the converse, let $MA^*(M)$ denote the set of L(M)-formulas that are boolean combinations of mutually algebraic formulas. This set is clearly closed under boolean combinations, and is closed under existential quantification by Proposition 2.7 of [3]. Thus, if we assume that every atomic formula is in $MA^*(M)$, it follows at once that every L(M)-formula is in $MA^*(M)$, hence M is mutually algebraic.

We will obtain a slight strengthening of Theorem 2.1 with Corollary 7.4(2). Whereas Theorem 2.1 placed no assumptions on the language, the main body of results in this paper assume that the underlying language is finite relational. In Section 7 we obtain equivalents to mutual algebraicity for structures in arbitrary languages.

Henceforth, for all results prior to Section 7, assume L has finitely many relation symbols, finitely many constant symbols, and no function symbols.

For L as above, fix a sequence $\overline{z}=(z_1,\ldots,z_n)$ of variable symbols and assume that every atomic $R\in L$ has variable symbols among $\{z_1,\ldots,z_n\}$. Fix an L-structure M. For a non-empty subsequence $\overline{x}\subseteq \overline{z}$ and a subset $B\subseteq M$, let $\operatorname{QF}_{\overline{x}}(B)$ denote the set of all quantifier-free L-formulas $\varphi(\overline{x},\overline{b})$ whose free variables are among \overline{x} and \overline{b} is from B. Whereas we require \overline{x} to be a subsequence of \overline{z} , there are no limitations on the length of the parameter sequence \overline{b} . By looking at the subsets of $M^{\lg(\overline{x})}$ they define, we can construe $\operatorname{QF}_{\overline{x}}(B)$ as a boolean algebra. Let $S_{\overline{x}}(B)$ denote its associated Stone space, i.e., the set of quantifier-free \overline{x} -types over B that decide each $\varphi\in\operatorname{QF}_{\overline{x}}(B)$. As usual, each of the Stone spaces $S_{\overline{x}}(B)$ are compact, Hausdorff, and totally disconnected when topologized by positing that the sets $\{U_{\varphi(\overline{x},\overline{b})}: \varphi(\overline{x},\overline{b}) \in \operatorname{QF}_{\overline{x}}(B)\}$, where $U_{\varphi(\overline{x},\overline{b})}=\{p\in S_{\overline{x}}(B): \varphi(\overline{x},\overline{b})\in p\}$, form a basis. Moreover, because L is finite relational, it follows that each $S_{\overline{x}}(B)$ is finite and every $p\in S_{\overline{x}}(B)$ is determined by a single $\varphi(\overline{x},\overline{b})\in p$ whenever B is finite.

Definition 2.2. Fix a non-empty $\overline{x} \subseteq \overline{z}$, a subset $B \subseteq M$ and an integer m. An \overline{x} -type $p \in S_{\overline{x}}(B)$ supports an m-array if there is a **pairwise disjoint** set $\{\overline{d}_i : i < m\}$ of (distinct) realizations of p in M. p supports an infinite array if M contains an infinite, pairwise disjoint set of realizations of p. For each **finite** $D \subseteq M$, let $N_{\overline{x},m}(D)$ be the (finite) number of $p \in S_{\overline{x}}(D)$ that support an m-array.

The following definition is central to this paper, and forms the connection with [4]. A local formulation, which relaxes the restriction on the language is given in Section 7.

Definition 2.3. A structure M in a finite, relational language has uniformly bounded arrays if there is an integer m such that for every non-empty $\overline{x} \subseteq \overline{z}$, there is an integer N such that $N_{\overline{x},m}(D) \leq N$ for all finite $D \subseteq M$. When such an N exists, we let $N_{\overline{x},m}^{\text{arr}}$ denote the smallest possible such N.

It is easily seen that the properties described above are elementary. In particular, if m and the (finite) sequence $\langle N_{\overline{x},m}^{\rm arr}: \overline{x} \subseteq \overline{z} \rangle$ witness that M has uniformly bounded arrays, then the same m and sequence $\langle N_{\overline{x},m}^{\rm arr}: \overline{x} \subseteq \overline{z} \rangle$ witness that any M' elementarily equivalent to M also has uniformly bounded arrays. Because of this, we say that a complete theory T in a finite, relational language has uniformly bounded arrays if some (equivalently all) models M of T have uniformly bounded arrays.

3 Supportive and array isolating types

Throughout this and the next few sections, fix a complete theory T in a finite, relational language L. Also fix an \aleph_1 -saturated model \mathbb{M} of T, which is a 'monster model' in the sense that all sets of parameters are chosen from \mathbb{M} .

Definition 3.1. For \overline{x} a subsequence of \overline{z} and B countable, $\operatorname{Supp}_{\overline{x}}(B)$ is the set of all $p \in S_{\overline{x}}(B)$ that support an infinite array. Let $\operatorname{Supp}(B)$ be the disjoint union of the spaces $S_{\overline{x}}(B)$ for all subsequences $\overline{x} \subseteq \overline{z}$.

It is easily seen by compactness that if B is countable and $p \in S_{\overline{x}}(B) \setminus \operatorname{Supp}_{\overline{x}}(B)$, then there is a number m and a formula $\theta(\overline{x}, \overline{b}) \in p$ that does not support an m-array. It follows from this that $\operatorname{Supp}_{\overline{x}}(B)$ is a closed, hence compact subspace of $S_{\overline{x}}(B)$. If we endow $\operatorname{Supp}(B)$ with the disjoint union topology (i.e., $U \subseteq \operatorname{Supp}(B)$ is open if and only if $(U \cap \operatorname{Supp}_{\overline{x}}(B))$ is open in $S_{\overline{x}}(B)$ for every $\overline{x} \subseteq \overline{z}$ then $\operatorname{Supp}(B)$ is compact as well.

Definition 3.2. Let B be any countable set. A tuple \overline{c} is generic over B if $\operatorname{tp}(\overline{c}/B)$ supports an infinite array.

The following Lemma shows that every non-algebraic type has a maximal 'component' that supports an infinite array.

Lemma 3.3. Suppose B is countable and consider an arbitrary type $p = \operatorname{tp}(\overline{c}/B)$, with free variables among $\overline{x} \subseteq \overline{z}$, that has infinitely many solutions in M, but does not support an infinite array. Then there is a non-empty subsequence $\overline{x}_u \subsetneq \overline{x}$ such that

- 1. $(\overline{c} \setminus \overline{c}_u)$ is generic over $B\overline{c}_u$; and
- 2. some formula $\delta(\overline{x}_u) \in \operatorname{tp}(\overline{c}_u/B)$ has only finitely many solutions in $\mathbb{M}^{\lg(\overline{x}_u)}$.

Proof. As notation, a Δ -system in p consists of a (possibly empty) subsequence \overline{x}_u of \overline{x} , a root $\overline{r} \in \mathbb{M}^{\lg(\overline{x}_u)}$, and an infinite set $A = \{\overline{a}_i : i \in \omega\}$ of distinct realizations of p satisfying:

- For all $i \in \omega$, the restriction $(\overline{a}_i)_u = \overline{r}$; and
- For distinct i, j the sets $(\overline{a}_i \setminus \overline{r}) \cap (\overline{a}_j \setminus \overline{r}) = \emptyset$.

The Δ -system lemma assures us that every infinite set C of realizations of p contains a Δ -system. Among all Δ -systems in p, choose \overline{x}_u , \overline{r} , and $A = \{\overline{a}_i : i \in \omega\}$ so that $\lg(\overline{x}_u)$ is minimized. As $\operatorname{tp}(\overline{a}_i/B) = \operatorname{tp}(\overline{c}/B)$ for every $i \in \omega$, it follows that $\operatorname{tp}(\overline{r}/B) = \operatorname{tp}(\overline{c}_u/B)$ and $\operatorname{tp}((\overline{a}_i \setminus \overline{r})/B\overline{r})$ is constant [Why? $\theta(\overline{x}_v, \overline{r}, \overline{b}) \in \operatorname{tp}((\overline{a}_i \setminus \overline{r})/B\overline{r})$ if and only if $\theta(\overline{x}_v, \overline{c}_u, \overline{b}) \in \operatorname{tp}((\overline{c} \setminus \overline{c}_u)/B\overline{c}_u)$.] Thus, the family $\{(\overline{a}_i \setminus \overline{r}) : i \in \omega\}$ witnesses that $\operatorname{tp}((\overline{a}_0 \setminus \overline{r})/B\overline{r})$ supports an infinite array. So, as $\operatorname{tp}(\overline{a}_0/B) = \operatorname{tp}(\overline{c}/B)$, it follows that $\operatorname{tp}((\overline{c} \setminus \overline{c}_u)/B\overline{c}_u)$ supports an infinite array as well.

Working towards (2), let $q(\overline{x}_u) := \operatorname{tp}(\overline{c}_u/B)$. If q had infinitely many solutions in $\mathbb{M}^{\lg(\overline{x}_u)}$, then arguing as above, we would get a Δ -system of realizations of q with root a proper subsequence of \overline{x}_u , contradicting our choice of \overline{x}_u in (1). Hence $q(\overline{x}_u)$ has only finitely many solutions in $\mathbb{M}^{\lg(\overline{x}_u)}$. As \mathbb{M} is \aleph_1 -saturated, the existence of a formula $\delta(\overline{x}_u) \in q$ with finitely many solutions follows by compactness.

When our base set is a model, generic sequences are easily identified.

Lemma 3.4. If $M \leq \mathbb{M}$ is countable, $\lg(\overline{c}) \leq \lg(\overline{z})$, and $\overline{c} \cap M = \emptyset$, then $\operatorname{tp}(\overline{c}/M)$ is generic.

Proof. This is immediate by Lemma 3.3 since M is algebraically closed in \mathbb{M} .

Next, we explore extensions of types $p \in \operatorname{Supp}(B)$. By compactness, it is easily seen that whenever $B \subseteq B'$ are countable, then every $p \in \operatorname{Supp}(B)$ has an extension to some $q \in \operatorname{Supp}(B')$. Abusing notation somewhat, let $\operatorname{Supp}(\mathbb{M})$ denote the set of global types with the property that every restriction to a countable set supports an infinite array. An easy compactness argument shows that every $p \in \operatorname{Supp}(B)$ has a 'global extension' to some $\mathbf{p} \in \operatorname{Supp}(\mathbb{M})$. In general, a type $p \in \operatorname{Supp}(B)$ has many such global extensions, but we focus on when this is unique.

Definition 3.5. A formula $\varphi(\overline{x}, \overline{e})$ is array isolating if there is exactly one global type $\mathbf{p} \in \operatorname{Supp}_{\overline{x}}(\mathbb{M})$ with $\varphi(\overline{x}, \overline{e}) \in \mathbf{p}$. Call a global type $\mathbf{p} \in \operatorname{Supp}_{\overline{x}}(\mathbb{M})$ array isolated if it contains some array isolating formula. Let $\operatorname{AI}_{\overline{x}}(\mathbb{M})$ denote the set of array isolated global \overline{x} -types and let $\operatorname{AI}(\mathbb{M})$ be the disjoint union of $\operatorname{AI}_{\overline{x}}(\mathbb{M})$ over all subsequences $\overline{x} \subseteq \overline{z}$. For $\mathbf{p} \in \operatorname{AI}(\mathbb{M})$, $\mathbf{p}|B$ denotes the restriction of \mathbf{p} to a type in $\operatorname{Supp}(B)$.

Definition 3.6. Say that $\mathbf{p} \in AI_{\overline{x}}(\mathbb{M})$ is based on B if $\mathbf{p} \cap QF_{\overline{x}}(B)$ contains an array isolating formula $\varphi(\overline{x}, \overline{e})$, the interpretation $c^{\mathbb{M}} \in B$ for every constant

symbol, and, moreover there is an infinite array $\{\overline{a}_i : i \in \omega\} \subseteq B^{\lg(\overline{x})}$ of realizations of $\varphi(\overline{x}, \overline{e})$.

Clearly, if **p** is based on B, then it is also based on any $B' \supseteq B$. If B is a model, then the second and third clauses are redundant, that is:

Lemma 3.7. If $M \leq \mathbb{M}$, $\mathbf{p} \in AI_{\overline{x}}(\mathbb{M})$ and $\mathbf{p} \cap QF_{\overline{x}}(M)$ contains an array isolating formula $\varphi(\overline{x}, \overline{e})$, then \mathbf{p} is based on M.

Proof. As $M \subseteq M$, every $c^{\mathbb{M}} \in M$. Now, fix an array isolating formula $\varphi(\overline{x}, \overline{e}) \in \mathbf{p} \cap \mathrm{QF}_{\overline{x}}(M)$ and we recursively construct an infinite array of realizations of $\varphi(\overline{x}, \overline{e})$ inside M as follows. First, let $B_0 = \overline{e}$ and let $p_0 = \mathbf{p}|B_0$. As the language L and B_0 are finite, p_0 is isolated by a formula over B_0 . As $M \subseteq M$, choose a realization \overline{a}_0 of p_0 inside M. Then put $B_1 = B_0 \cup {\overline{a}_0}$, let $p_1 = \mathbf{p}|B_1$, and continue for ω steps.

There is a tight analogy between almost isolated types \mathbf{p} based on B and strong types over B in a stable theory, but in general they are not equivalent. Indeed, as we are restricting to quantifier free types, a typical restriction $\mathbf{p}|B$ is not even a complete type with respect to formulas with quantifiers. We show that every $\mathbf{p} \in AI(\mathbb{M})$ is B-definable for any B on which it is based.

Lemma 3.8. Suppose $\varphi(\overline{x}, \overline{e})$ is an array isolating formula and $\theta(\overline{x}, \overline{y}) \in QF_{\overline{x}\overline{y}}(\emptyset)$. There is an integer $m = m(\varphi(\overline{x}, \overline{e}), \theta)$ such that for all $\overline{d} \in \mathbb{M}^{\lg(\overline{y})}$, exactly one of $\varphi(\overline{x}, \overline{e}) \wedge \theta(\overline{x}, \overline{d})$ and $\varphi(\overline{x}, \overline{e}) \wedge \neg \theta(\overline{x}, \overline{d})$ admits an m-array.

Proof. As $\varphi(\overline{x}, \overline{e})$ admits an infinite array, at least one of the two formulas will as well. However, if such an m did not exist, then for each m there would be a tuple \overline{d}_m such that both $\varphi(\overline{x}, \overline{e}) \wedge \theta(\overline{x}, \overline{d}_m)$ and $\varphi(\overline{x}, \overline{e}) \wedge \neg \theta(\overline{x}, \overline{d}_m)$ admit an m-array. Thus, by the saturation of \mathbb{M} , there would be a tuple \overline{d}^* such that both $\varphi(\overline{x}, \overline{e}) \wedge \theta(\overline{x}, \overline{d}^*)$ and $\varphi(\overline{x}, \overline{e}) \wedge \neg \theta(\overline{x}, \overline{d}^*)$ admit infinite arrays, contradicting $\varphi(\overline{x}, \overline{e})$ being array isolating.

Definition 3.9. Fix any $\mathbf{p} \in AI_{\overline{x}}(\mathbb{M})$ and any set B on which it is based. Choose an array isolating formula $\varphi(\overline{x}, \overline{e}) \in \mathbf{p} \cap QF_{\overline{x}}(B)$ and an infinite array $\{\overline{a}_i : i \in \omega\} \subseteq B^{\lg(\overline{x})}$ of realizations of $\varphi(\overline{x}, \overline{e})$. For any $\theta(\overline{x}, \overline{y}) \in QF_{\overline{xy}}(\emptyset)$ let

$$d_{\mathbf{p}}\overline{x}\theta(\overline{x},\overline{y}) := \bigvee_{s \in \binom{2m}{m}} \bigwedge_{i \in s} \theta(\overline{a}_i,\overline{y})$$

where $m = m(\varphi(\overline{x}, \overline{e}), \theta)$ is chosen by Lemma 3.8.

Visibly, $d_{\mathbf{p}}\overline{x}\theta(\overline{x},\overline{y}) \in \mathrm{QF}_{\overline{y}}(B)$. Its relationship to $\theta(\overline{x},\overline{y})$ and \mathbf{p} is explained by the following Lemma.

Lemma 3.10. Suppose $\mathbf{p} \in AI(\mathbb{M})$ is based on a countable set B and $\varphi(\overline{x}, \overline{e})$ and $\{\overline{a}_i : i \in \omega\}$ are chosen as in Definition 3.9. The following are equivalent for any $\theta(\overline{x}, \overline{y}) \in QF_{\overline{xy}}(\emptyset)$ and any $\overline{d} \in \mathbb{M}^{\lg(\overline{y})}$:

- 1. $\mathbb{M} \models d_{\mathbf{p}}\overline{x}\theta(\overline{x},\overline{d});$
- 2. $\theta(\overline{x}, \overline{d}) \in \mathbf{p}$;
- 3. For all countable B', $\mathbf{p}|B' \cup \{\theta(\overline{x},\overline{d})\}$ supports an infinite array; and
- 4. The partial type $\mathbf{p}|B \cup \{\theta(\overline{x}, \overline{d})\}$ supports an array of length $m = m(\varphi(\overline{x}, \overline{e}), \theta)$.
- **Proof.** (1) \Rightarrow (2): As $\mathbb{M} \models d_{\mathbf{p}}\overline{x}\theta(\overline{x},\overline{d})$, some m-element subset of $\{\overline{a}_i : i < 2m\}$ is an m-array of realizations of $\varphi(\overline{x},\overline{e}) \wedge \theta(\overline{x},\overline{d})$. By choice of m, Lemma 3.8 implies that $\varphi(\overline{x},\overline{e}) \wedge \theta(\overline{x},\overline{d})$ supports an infinite array, so $\theta(\overline{x},\overline{d}) \in \mathbf{p}$.
- $(2) \Rightarrow (3)$: Choose any countable B'. If $\theta(\overline{x}, \overline{d}) \in \mathbf{p}$, then as $\mathbf{p}|B' \cup \{\theta(\overline{x}, \overline{d})\}$ is a countable subset of \mathbf{p} , it supports an infinite array.
 - $(3) \Rightarrow (4)$: Trivial.
- $(4) \Rightarrow (1)$: Assume that $\mathbb{M} \models \neg d_{\mathbf{p}} \overline{x} \theta(\overline{x}, \overline{d})$. Then some m-element subset of $\{\overline{a}_i : i < 2m\}$ witnesses that $\varphi(\overline{x}, \overline{e}) \wedge \neg \theta(\overline{x}, \overline{d})$ supports an m-array. By Lemma 3.8, $\varphi(\overline{x}, \overline{e}) \wedge \theta(\overline{x}, \overline{d})$ cannot support an m-array. Consequently $p|B \cup \{\theta(\overline{x}, \overline{d})\}$ cannot support an m-array (and thus cannot support an infinite array).

4 Free products of array isolated types

Throughout this section, T is a complete theory in a finite, relational language and \mathbb{M} is an \aleph_1 -saturated model, from which we take our parameters.

In this section we describe how to construct a 'free join' of array isolated types. Suppose $\overline{x}, \overline{y}$ are disjoint, non-empty subsequences of \overline{z} , $\mathbf{p}(\overline{x}) \in \mathrm{AI}_{\overline{x}}(\mathbb{M})$, and $\mathbf{q}(\overline{y}) \in \mathrm{AI}_{\overline{y}}(\mathbb{M})$. We show that there is a well-defined $\mathbf{r}(\overline{x}, \overline{y}) \in \mathrm{Supp}_{\overline{xy}}(\mathbb{M})$ constructed from this data. We begin with lemmas that unpack our definitions. **Lemma 4.1.** Suppose $\mathbf{p}(\overline{x}), \mathbf{q}(\overline{y})$ are as above and B is a countable set on which both \mathbf{p} and \mathbf{q} are based. For any $\theta(\overline{x}, \overline{y}, \overline{b}) \in \mathrm{QF}_{\overline{x}\overline{y}}(B)$ and any \overline{c} realizing $\mathbf{p}|B$,

$$\theta(\overline{c}, \overline{y}, \overline{b}) \in \mathbf{q} | B\overline{c}$$
 if and only if $d_{\mathbf{q}}\theta(\overline{x}, \overline{y}, \overline{b}) \in \mathbf{p} | B$

Proof. First, assume $\theta(\bar{c}, \bar{y}, \bar{b}) \in \mathbf{q} | B\bar{c}$. Then $\mathbf{q} | B \cup \{\theta(\bar{c}, \bar{y}, \bar{b}\} \subseteq \mathbf{q}, \text{ hence it supports an infinite array. By Lemma 3.10 applied to <math>\theta(\bar{c}, \bar{y}, \bar{b})$ (i.e., taking $\bar{d} := \bar{c}\bar{b}$),

$$\mathbb{M} \models d_{\mathbf{q}}\theta(\overline{c}, \overline{y}, \overline{b})$$

Taking \overline{w} to be a sequence of variables for \overline{b} , since $d_{\mathbf{q}}\overline{y}\theta(\overline{x},\overline{y},\overline{w}) \in \mathrm{QF}_{\overline{x}\overline{w}}(B)$, \overline{b} is from B, and \overline{c} realizes $\mathbf{p}|B$, we conclude that $d_{\mathbf{q}}\overline{y}\theta(\overline{x},\overline{y},\overline{b}) \in \mathbf{p}|B$.

The converse is dual, using $\neg \theta$ in place of θ .

Lemma 4.2. Suppose $\mathbf{p}(\overline{x}), \mathbf{q}(\overline{y})$ are as above and B is a countable set on which both \mathbf{p} and \mathbf{q} are based. For any $\theta(\overline{x}, \overline{y}, \overline{b}) \in \mathrm{QF}_{\overline{x}\overline{y}}(B)$ and any $\overline{c}, \overline{c}'$ realizing $\mathbf{p}|B$, $\theta(\overline{c}, \overline{y}, \overline{b}) \in \mathbf{q}|B\overline{c}$ if and only if $\theta(\overline{c}', \overline{y}, \overline{b}) \in \mathbf{q}|B\overline{c}'$.

Proof. By Lemma 4.1, each statement is equivalent to $d_{\mathbf{q}}\theta(\overline{x}, \overline{y}, \overline{b}) \in \mathbf{p}|B$, which does not depend on our choice of \overline{c} .

Extending this,

Lemma 4.3. Suppose $\mathbf{p}(\overline{x}), \mathbf{q}(\overline{y})$ are as above and B is a countable set on which both \mathbf{p} and \mathbf{q} are based. For any $\theta(\overline{x}, \overline{y}, \overline{b}) \in \mathrm{QF}_{\overline{xy}}(B)$ and any $\overline{c}, \overline{c}'$ realizing $\mathbf{p}|B$, for any \overline{d} realizing $\mathbf{q}|B\overline{c}$ and \overline{d}' realizing $\mathbf{q}|B\overline{c}'$, the following three notions are equivalent:

- 1. $\mathbb{M} \models \theta(\overline{c}, \overline{d}, \overline{b});$
- 2. $\mathbb{M} \models d_{\mathbf{p}}\overline{x}[d_{\mathbf{q}}\overline{y}\theta(\overline{x},\overline{y},\overline{b})]; and$
- 3. $\mathbb{M} \models \theta(\overline{c}', \overline{d}', \overline{b})$.

Proof. Because of the duality in the statements, it suffices to prove $(1) \Leftrightarrow (2)$. First, assume (1) holds. As \overline{d} realizes $\mathbf{q}|B\overline{c}$, we infer $\theta(\overline{c},\overline{y},\overline{b}) \in \mathbf{q}$. So, by Lemma 3.10, $\mathbb{M} \models d_{\mathbf{q}}\overline{y}\theta(\overline{c},\overline{y},\overline{b})$. As $d_{\mathbf{q}}\overline{y}\theta(\overline{x},\overline{y},\overline{b}) \in \mathrm{QF}_{\overline{x}\overline{y}}(B)$ and \overline{c} realizes $\mathbf{p}|B$, we conclude that $d_{\mathbf{q}}\overline{y}\theta(\overline{x},\overline{y},\overline{b}) \in \mathbf{p}$ and hence $\mathbb{M} \models d_{\mathbf{p}}\overline{x}[d_{\mathbf{q}}\overline{y}\theta(\overline{x},\overline{y},\overline{b})]$. Showing that $(\neg 1)$ implies $(\neg 2)$ is dual, using $\neg \theta$ in place of θ .

We now define the free product of array supporting global types.

Definition 4.4. Suppose $\overline{x}, \overline{y}$ are disjoint subsequences of $\overline{z}, \mathbf{p} \in AI_{\overline{x}}(\mathbb{M})$ and $\mathbf{q} \in AI_{\overline{y}}(\mathbb{M})$. Then the *free product* $\mathbf{r} = \mathbf{p} \times \mathbf{q}$ is defined as

$$\mathbf{r}(\overline{x},\overline{y}) := \{\theta(\overline{x},\overline{y},\overline{b}) \in \mathrm{QF}_{\overline{x}\overline{y}}(\mathbb{M}) : \mathbb{M} \models d_{\mathbf{p}}\overline{x}[d_{\mathbf{q}}\overline{y}\theta(\overline{x},\overline{y},\overline{b})]\}$$

Because of Lemma 4.3, $\mathbf{r}(\overline{x}, \overline{y})$ is also equal to the set of all $\theta(\overline{x}, \overline{y}, \overline{b}) \in \mathrm{QF}_{\overline{xy}}(\mathbb{M})$ such that for some/every B on which both \mathbf{p} and \mathbf{q} are based and \overline{b} is from B, for some/every \overline{c} realizing $\mathbf{p}|B$ and for some/every \overline{d} realizing $\mathbf{q}|B\overline{c}$ we have $\mathbb{M} \models \theta(\overline{c}, \overline{d}, \overline{b})$. It is easily seen from this characterization that $\mathbf{r}(\overline{x}, \overline{y}) \in \mathrm{Supp}_{\overline{xy}}(\mathbb{M})$.

Next, we show that the free join is symmetric. We begin with a Lemma.

Lemma 4.5. Suppose $\overline{x}, \overline{y}$ are disjoint subsequences of \overline{z} , $\mathbf{p}(\overline{x}) \in \mathrm{AI}_{\overline{x}}(\mathbb{M})$, $\mathbf{q}(\overline{y}) \in \mathrm{AI}_{\overline{y}}(\mathbb{M})$. Then for every countable set B on which both types are based, for every \overline{c} realizing $\mathbf{p}|B$, \overline{d} realizing $\mathbf{q}|B$, and for every $\theta(\overline{x}, \overline{y}, \overline{b}) \in \mathrm{QF}_{\overline{xy}}(B)$ such that $\mathbb{M} \models \theta(\overline{c}, \overline{d}, \overline{b})$,

$$\theta(\overline{x}, \overline{d}, \overline{b}) \in \mathbf{p}|B\overline{d}$$
 if and only if $\theta(\overline{c}, \overline{y}, \overline{b}) \in \mathbf{q}|B\overline{c}$

Proof. Assume by way of contradiction that $\theta(\overline{x}, \overline{d}, \overline{b}) \in \mathbf{p}|B\overline{d}$, but $\theta(\overline{c}, \overline{y}, \overline{b}) \notin \mathbf{q}|B\overline{c}$, with the other direction being dual.

Write θ as $\theta(\overline{x}, \overline{y}, \overline{w})$. As B is based on both \mathbf{p} and \mathbf{q} , choose array isolating formulas $\varphi(\overline{x}, \overline{e}) \in \mathrm{QF}_{\overline{x}}(B)$ and $\psi(\overline{y}, \overline{e}') \in \mathrm{QF}_{\overline{y}}(B)$ for \mathbf{p} and \mathbf{q} , respectively. Let $m = \max\{m(\varphi(\overline{x}, \overline{e}), \theta(\overline{x}; \overline{y}\overline{w})), m(\psi(\overline{y}, \overline{e}'), \theta(\overline{y}; \overline{x}\overline{w}))\}$. (Note the different partitions of θ .)

As B is countable, choose infinite arrays $\{\overline{c}_i : i \in \omega\}$ and $\{\underline{d}_j : j \in \omega\}$ for $\mathbf{p}|B$ and $\mathbf{q}|B$, respectively. By Lemma 4.1 we have that $\theta(\overline{x}, \overline{d}_j, \overline{b}) \in \mathbf{p}|B\overline{d}_j$ for each j and that $\theta(\overline{c}_i, \overline{y}, \overline{b}) \not\in \mathbf{q}|B\overline{c}_i$ for each i. By passing to infinite subsequences, we may additionally assume these sets are pairwise disjoint (i.e., $\overline{c}_i \cap \overline{d}_j = \emptyset$ for all i, j). Choose a number K >> m. Form a finite, bipartite graph with universe $C \cup D$, where $C = \{\overline{c}_i : i < K\}$ and $D = \{\overline{d}_j : j < K\}$ with an edge $E(\overline{c}_i, \overline{d}_j)$ if and only if $\mathbb{M} \models \theta(\overline{c}_i, \overline{d}_j, \overline{b})$. We will obtain a contradiction by counting the number of edges in two different ways.

On one hand, because $\theta(\bar{c}_i, \bar{y}, \bar{b}) \notin \mathbf{q} | B\bar{c}_i$, $\mathbf{q} | B \cup \{\theta(\bar{c}_i, \bar{y}, \bar{b})\}$ does not support an infinite array for each \bar{c}_i . By our choice of m, it cannot support an array of length m either. Because any m-element subset of D is an array of length m, we conclude that for every \bar{c}_i , there are fewer than m many \bar{d}_j such that $\mathbb{M} \models \theta(\bar{c}_i, \bar{d}_j)$. Thus, the number of edges of the graph is bounded above by Km. On the other hand, for any \bar{d}_j , as $\mathbf{p} | B \cup \{\theta(\bar{x}, \bar{d}_j, \bar{b})\}$ supports

an infinite array, $\mathbf{q}|B \cup \{\neg \theta(\overline{x}, \overline{d}_j, \overline{b})\}$ cannot support an infinite array, hence cannot support an array of size m. Thus, the edge-valence of each \overline{d}_j is at least (K-m), implying that our graph has at least K(K-m) edges. As K is much larger than m, this is a contradiction.

Corollary 4.6. Suppose $\overline{x}, \overline{y}$ are disjoint subsequences of \overline{z} , $\mathbf{p} \in AI_{\overline{x}}(\mathbb{M})$, and $\mathbf{q} \in AI_{\overline{y}}(\mathbb{M})$. Then $\mathbf{p} \times \mathbf{q} = \mathbf{q} \times \mathbf{p}$. That is, for any set B on which both \mathbf{p}, \mathbf{q} are based and for any $\theta(\overline{x}, \overline{y}, \overline{w}) \in QF_{\overline{xyw}}(\emptyset)$, the formulas $d_{\mathbf{p}}\overline{x}[d_{\mathbf{q}}\overline{y}\theta(\overline{x}, \overline{y}, \overline{w})]$ and $d_{\mathbf{q}}\overline{y}[d_{\mathbf{p}}\overline{x}\theta(\overline{x}, \overline{y}, \overline{w})]$ in $QF_{\overline{w}}(B)$ are equivalent.

Proof. Choose any $\theta(\overline{x}, \overline{y}, \overline{b}) \in \mathbf{p} \times \mathbf{q}$ with $\overline{b} \in \mathbb{M}^{\lg(\overline{w})}$. Choose any countable set B containing \overline{b} on which both \mathbf{p} and \mathbf{q} are based. Choose \overline{c} realizing $\mathbf{p}|B$ and \overline{d} realizing $\mathbf{q}|B\overline{c}$. By the equivalent definition of $\mathbf{p} \times \mathbf{q}$, $(\overline{c}, \overline{d})$ realizes $\mathbf{p} \times \mathbf{q}$, hence $\mathbb{M} \models \theta(\overline{c}, \overline{d}, \overline{b})$. Thus, by Lemma 4.5, \overline{c} also realizes $\mathbf{p}|B\overline{d}$. Hence $(\overline{c}, \overline{d})$ also realizes $\mathbf{q} \times \mathbf{p}$, so $\theta(\overline{x}, \overline{y}, \overline{b}) \in \mathbf{q} \times \mathbf{p}$ as well.

5 Finitely many mutually algebraic types supporting arrays

We continue our assumption that \mathbb{M} is an \aleph_1 -saturated model of a complete theory T in a finite, relational language. In this section, we add mutual algebraicity to the discussion of supportive and array isolating types.

Definition 5.1. For $\overline{x} \subseteq \overline{z}$ non-empty, a global, supportive type $\mathbf{p} \in \operatorname{Supp}_{\overline{x}}(\mathbb{M})$ is quantifier-free mutually algebraic (QMA) if \mathbf{p} contains a mutually algebraic formula $\varphi(\overline{x}) \in \operatorname{QF}_{\overline{x}}(\mathbb{M})$. Let $\operatorname{QMA}_{\overline{x}}(\mathbb{M})$ denote the set of QMA types in $\operatorname{Supp}_{\overline{x}}(\mathbb{M})$. Let $\operatorname{QMA}(\mathbb{M})$ be the (finite) disjoint union of the sets $\operatorname{QMA}_{\overline{x}}(\mathbb{M})$.

The goal of this section will be to deduce consequences from QMA(M) being finite. We begin with two finiteness lemmas.

Lemma 5.2. Fix $\overline{x} \subseteq \overline{z}$ and assume that $\operatorname{Supp}_{\overline{x}}(\mathbb{M})$ is finite. Then $\operatorname{Supp}_{\overline{x}}(\mathbb{M}) = \operatorname{AI}_{\overline{x}}(\mathbb{M})$ and, moreover, every $\mathbf{p} \in \operatorname{AI}_{\overline{x}}(\mathbb{M})$ is based on every $\mathbb{M} \subseteq \mathbb{M}$.

Proof. As $\operatorname{Supp}_{\overline{x}}(\mathbb{M})$ is always a closed subspace of $S_{\overline{x}}(\mathbb{M})$, it is compact. Thus, if it is finite, every $\mathbf{p} \in \operatorname{Supp}_{\overline{x}}(\mathbb{M})$ is isolated. For the moreover clause, write $\operatorname{Supp}_{\overline{x}}(\mathbb{M}) = \{\mathbf{p}_1, \dots, \mathbf{p}_n\}$ and choose array isolating formulas $\varphi_i(\overline{x}, \overline{e}_i)$ for each \mathbf{p}_i . By repeated use of Lemma 3.8, let m^* be the maximum of all $m(\varphi_i(\overline{x}, \overline{e}_i), R(\overline{x}, \overline{y}))$ among all $\mathbf{p}_i \in \operatorname{Supp}_{\overline{x}}(\mathbb{M})$ and all atomic $R \in L$. Then \mathbb{M} is a model of the sentence

 $\exists \overline{w}_1 \dots \exists \overline{w}_n$ [for all atomic $R \in L$, for all \overline{z} , and for all $1 \leq i \leq n$, exactly one of $\varphi_i(\overline{x}, \overline{w}_i) \wedge R(\overline{x}, \overline{z})$ and $\varphi_i(\overline{x}, \overline{w}_i) \wedge \neg R(\overline{x}, \overline{z})$ supports an m^* -array].

Thus, any $M \leq \mathbb{M}$ also models this sentence. If $\overline{e}_1^*, \dots \overline{e}_n^*$ are witnesses from M, then it is easily checked that $\varphi_i(\overline{x}, \overline{e}_i)$ array isolates \mathbf{p}_i for each i. In light of Lemma 3.7, it follows that each \mathbf{p}_i is based on M.

Lemma 5.3. If $QMA_{\overline{x}}(M)$ is finite, then every $\mathbf{p} \in QMA_{\overline{x}}(M)$ is array isolated, i.e., $\mathbf{p} \in AI_{\overline{x}}(M)$.

Proof. Fix any $\mathbf{p} \in \mathrm{QMA}_{\overline{x}}(\mathbb{M})$. Choose a mutually algebraic $\varphi_0(\overline{x}, \overline{e}_0) \in \mathbf{p}$. For each $\mathbf{q} \in \mathrm{QMA}_{\overline{x}}(\mathbb{M})$ distinct from \mathbf{p} , choose a formula $\varphi_{\mathbf{q}}(\overline{x}, \overline{e}_{\mathbf{q}}) \in \mathbf{p} \setminus \mathbf{q}$. Then the formula $\varphi_0(\overline{x}, \overline{e}_0) \wedge \bigwedge_{\mathbf{q} \neq \mathbf{p}} \varphi_{\mathbf{q}}(\overline{x}, \overline{e}_{\mathbf{q}})$ array isolates \mathbf{p} .

Definition 5.4. Fix any non-empty $\overline{x} \subseteq \overline{z}$. A partition $\mathcal{P} = \{\overline{x}_1, \dots, \overline{x}_r\}$ of \overline{x} satisfies (1) each \overline{x}_i non-empty and (2) Every $x \in \overline{x}$ is contained in exactly one \overline{x}_i . For $w \subseteq \{1, \dots, r\}$, let \overline{x}_w be the subsequence of \overline{x} with universe $\bigcup \{\overline{x}_i : i \in w\}$.

For $\overline{c} \in (M)^{\lg(\overline{x})}$, a partition \mathcal{P} of \overline{x} naturally induces a partition $\{\overline{c}_1, \ldots, \overline{c}_r\}$ of \overline{c} . For $w \subseteq \{1, \ldots, r\}$, \overline{c}_w is the subsequence of \overline{c} corresponding to \overline{x}_w .

Definition 5.5. Fix any $\overline{x} \subseteq \overline{z}$, any countable $M \preceq \mathbb{M}$, and $\overline{c} \in (\mathbb{M} \setminus M)^{\lg(\overline{x})}$. A maximal mutually algebraic decomposition of \overline{c} over M consists of a partition $\mathcal{P} = \{\overline{x}_1, \dots, \overline{x}_r\}$ of \overline{x} for which the induced partition $\{\overline{c}_1, \dots, \overline{c}_r\}$ of \overline{c} satisfies the following for each $i \in \{1, \dots, r\}$:

- \overline{c}_i realizes a mutually algebraic formula $\varphi(\overline{x}_i) \in QF_{\overline{x}_i}(M)$; but
- For any proper extension $\overline{x}_i \subseteq \overline{u} \subseteq \overline{x}$, the subsequence \overline{d} of \overline{c} induced by \overline{u} does not realize any mutually algebraic formula $\psi(\overline{u}) \in \mathrm{QF}_{\overline{u}}(M)$.

Lemma 5.6. For any $\overline{x} \subseteq \overline{z}$ and every countable $M \preceq M$, every $\overline{c} \in (M \setminus M)^{\lg(\overline{x})}$ admits a unique maximal mutually algebraic decomposition over M.

Proof. First, by Lemma 3.4, both \overline{c} and any subsequence of \overline{c} are generic over M. Next, as every formula $\varphi(x)$ in one free variable is mutually algebraic, every singleton $c \in \overline{c}$ realizes a mutually algebraic formula. For each $x \in \overline{x}$, choose a subsequence \overline{x}_i of \overline{x} containing x such that \overline{c}_i realizes a mutually algebraic formula in $\operatorname{QF}_{\overline{x}_i}(M)$ and is maximal i.e., there is no

proper extension $\overline{x}' \supseteq \overline{x}_i$ for which \overline{c}' realizes a mutually algebraic formula in $\operatorname{QF}_{\overline{x}'}(M)$. Clearly, $\{\overline{x}_1, \ldots, \overline{x}_r\}$ covers \overline{x} . The fact that it is a partition follows from the fact that if $\overline{x}_i, \overline{x}_j$ are not disjoint and $\varphi(\overline{x}_i), \psi(\overline{x}_j)$ are each mutually algebraic, then their conjunction $(\varphi \land \psi)(\overline{x}_i \overline{x}_j)$ is mutually algebraic as well (see e.g. Lemma 2.4(6) of [2]).

It is easily checked that if $\{\overline{c}_1,\ldots,\overline{c}_r\}$ is a maximal mutually algebraic decomposition of \overline{c} over M, then for any $w\subseteq\{1,\ldots,r\}$, the subset $\{\overline{c}_i:i\in w\}$ is a maximal, mutually algebraic decomposition of \overline{c}_w over M.

We are now able to state and prove the following.

Proposition 5.7. Suppose that QMA(M) is finite. Then, for every subsequence $\overline{x} \subseteq \overline{z}$, every $\mathbf{p} \in \operatorname{Supp}_{\overline{x}}(\mathbb{M})$ is equal to a free product $\mathbf{q} = \mathbf{p}_1 \times \cdots \times \mathbf{p}_r$ of types from QMA $_{\overline{x}}(\mathbb{M})$. In particular, each $\operatorname{Supp}_{\overline{x}}(\mathbb{M})$ is finite.

Proof. We prove this by induction on \overline{x} , i.e., we assume the Proposition holds for all proper subsequences \overline{x}' of \overline{x} and prove the result for \overline{x} . To base the induction, first note that if $x \in \overline{z}$ is a singleton, then as every formula $\varphi(x)$ is mutually algebraic, every $\mathbf{q} \in \operatorname{Supp}_x(\mathbb{M})$ is also in $\operatorname{QMA}_x(\mathbb{M})$, which we assumed was finite.

Now, suppose \overline{x} is a subsequence of \overline{z} , $\lg(\overline{x}) \geq 2$, and the Proposition holds for every proper subsequence \overline{x}' of \overline{x} . In particular, as $\operatorname{Supp}_{\overline{x}'}(\mathbb{M})$ is finite, each $\mathbf{q} \in \operatorname{Supp}_{\overline{x}'}(\mathbb{M})$ contains an array isolating formula by Lemma 5.2. Choose a finite set D such that for every subsequence \overline{x}' of \overline{x} , $\operatorname{QF}_{\overline{x}'}(D)$ contains an array isolating formula for every $p \in \operatorname{Supp}_{\overline{x}'}(\mathbb{M})$ and a mutually algebraic formula for every $q \in \operatorname{QMA}_{\overline{x}'}$. Next, choose a countable $M \leq \mathbb{M}$ containing D. Note that by Lemma 5.2 again, every $\mathbf{q} \in \operatorname{Supp}_{\overline{x}'}(\mathbb{M})$ is based on M for every subsequence \overline{x}' of \overline{x} .

Choose any $\mathbf{q}^* \in \operatorname{Supp}_{\overline{x}}(\mathbb{M})$. Towards showing that \mathbf{q}^* is a free product of types from $\operatorname{QMA}_{\overline{x}}(\mathbb{M})$, choose any $\overline{c} \in (\mathbb{M} \setminus M)^{\lg(\overline{x})}$ realizing $\mathbf{q}^*|M$. Suppose the partition $\mathcal{P} = \{\overline{x}_1, \dots, \overline{x}_r\}$ of \overline{x} yields the maximal, mutually algebraic decomposition $\overline{c}_1 \, \dots \, \overline{c}_r$ of \overline{c} over M.

There are now two cases. First, if r=1, then $\operatorname{tp}(\overline{c}/M)$ contains a mutually algebraic formula, so $\mathbf{q}^* \in \operatorname{QMA}_{\overline{x}}(\mathbb{M})$ and we are finished. So assume $r \geq 2$. As notation, for each $1 \leq j \leq r$, let \overline{w}_j be the subsequence $\overline{x}_1 \dots \overline{x}_{j-1} \overline{x}_{j+1} \dots \overline{x}_r$ of \overline{x} and let \overline{d}_j be the corresponding subsequence of \overline{c} . As each \overline{d}_j is a proper subsequence of \overline{c} , our inductive hypothesis, along with our choices of D and M imply that $\operatorname{tp}(\overline{d}_j/M)$ contains an array isolating formula. Let \mathbf{q}_j be the (unique) global extension of $\operatorname{tp}(\overline{d}_j/M)$ to $\operatorname{AI}_{\overline{w}_j}(\mathbb{M})$. By

our inductive hypothesis again, each $\mathbf{q}_j = (\mathbf{p}_1 \times \dots \mathbf{p}_{j-1} \times \mathbf{p}_{j+1} \times \dots \mathbf{p}_r)$. As each \mathbf{p}_j is also array isolated, by iterating Lemma 4.5 finitely often it follows that there is a unique supportive type $\mathbf{r}^*(\overline{x})$ which is equal to $\mathbf{q}_j(\overline{w}_j) \times \mathbf{p}_j(\overline{x}_j)$ for every $1 \leq j \leq r$.

In light of the characterization of free products following Definition 4.4, in order to conclude that $\mathbf{q}^* = \mathbf{q}_r \times \mathbf{p}_r = \mathbf{r}^*$, it suffices to prove the following Claim.

Claim. \overline{d}_r is generic over $M\overline{c}_r$.

Assume this were not the case. We obtain a contradiction by showing that the whole of $\operatorname{tp}(\overline{c}_1,\ldots,\overline{c}_r/M)$ contains a mutually algebraic formula $\varphi(\overline{x})$. By Lemma 3.3, choose a maximal subsequence \overline{c}_u of \overline{d}_r and $\delta_r(\overline{x}_u,\overline{c}_r,\overline{b}_r)\in\operatorname{tp}(\overline{c}_u/M\overline{c}_r)$ with only finitely many solutions. As $\operatorname{tp}(\overline{c}_i/M)$ is mutually algebraic for each i, it follows from the maximality of u that there is a non-empty subset $w\subseteq\{1,\ldots,r-1\}$ such that $\overline{c}_u=\overline{c}_w$. To ease notation, say $w=\{1,\ldots,s\}$ for some $s\leq r-1$. We argue that s=r-1. If this were not the case, then $\{\overline{c}_1,\ldots,\overline{c}_s,\overline{c}_r\}$ would be a maximal mutually algebraic decomposition over M of the subsequence \overline{c}_1 \ldots \overline{c}_s \overline{c}_r whose corresponding variables $\overline{x}_1\ldots\overline{x}_s\overline{x}_r$ form a proper subsequence of \overline{x} . Thus, by our inductive hypothesis, $\operatorname{tp}(\overline{c}_1\ldots\overline{c}_s\overline{c}_r/M)$ would equal $(\mathbf{p}_1\times\cdots\times\mathbf{p}_s\times\mathbf{p}_r)|M$, which is contradicted by the formula $\delta_r(\overline{x}_1,\ldots,\overline{x}_s,\overline{x}_r,\overline{b}_r)\in\operatorname{tp}(\overline{c}_1\ldots\overline{c}_s\overline{c}_r/M)$. Thus, we conclude that s=r-1. Hence, $\delta_r(\overline{w}_r,\overline{c}_r,\overline{b}_r)$ has only finitely many solutions.

Next, choose any j < r. Now the presence of the formula δ_r implies that $\mathbf{q}^* \neq \mathbf{r}^*$, hence $\mathbf{q}^* \neq \mathbf{q}_j \times \mathbf{p}_j$. From this, it follows that \overline{d}_j is not generic over $M\overline{c}_j$. So, arguing just as above, but replacing r by j throughout, we conclude there is a formula $\delta_j(\overline{x}, \overline{b}_j) \in \operatorname{tp}(\overline{c}/M)$ for which $\delta_j(\overline{w}_j; \overline{c}_j \overline{b}_j)$ has only finitely many solutions.

Thus, if we choose a mutually algebraic formula $\gamma_j \in \operatorname{tp}(\bar{c}_j/M)$ for each $j \leq r$, we conclude that the formula

$$\varphi(\overline{x}_1, \dots, \overline{x}_r, \overline{b}_1 \dots \overline{b}_r) = \bigwedge_{j \le r} (\gamma_j(\overline{x}_j) \wedge \delta_j(\overline{w}_j, \overline{x}_j, \overline{b}_j))$$

is mutually algebraic with free variables \overline{x} and is in $\operatorname{tp}(\overline{c}/M)$. This contradicts our assumption that $\operatorname{tp}(\overline{c}/M)$ was not mutually algebraic. This completes the proof of the Claim as well as the Proposition.

Conclusion 5.8. If QMA(M) is finite, then so is Supp(M). Moreover, for any $\overline{x} \subseteq \overline{z}$ and $\overline{c} \in (\mathbb{M} \setminus M)^{\lg(\overline{x})}$, then $\operatorname{tp}(\overline{c}/M)$ is determined by the maximal mutually algebraic partition $\mathcal{P} = \{\overline{x}_1, \ldots, \overline{x}_r\}$ and the corresponding set $\{\mathbf{p}_1, \ldots, \mathbf{p}_r\}$ of QMA $_{\overline{x}_i}(\mathbb{M})$ types.

6 Mutual algebraicity and unbounded arrays

The whole of this section is devoted to the statement and proof of Theorem 6.1. It can be construed as a kind of 'Ryll-Nardzewski theorem' for Stone spaces of quantifier-free types.

Theorem 6.1. Suppose T is a complete theory in a finite, relational language, all of whose atomic formulas have free variables among \overline{z} , and let \mathbb{M} be an \aleph_1 -saturated model of T. The following are equivalent.

- 1. T has uniformly bounded arrays;
- 2. For all subsequences $\overline{x} \subseteq \overline{z}$, Supp $_{\overline{x}}(\mathbb{M})$ is finite;
- 3. For all subsequences $\overline{x} \subseteq \overline{z}$, every global supportive type $\mathbf{p} \in \operatorname{Supp}_{\overline{x}}(\mathbb{M})$ is array isolated;
- 4. Whenever $M \leq N$ are models of T, for all subsequences $\overline{x} \subseteq \overline{z}$, there are only finitely many types in $S_{\overline{x}}(M)$ realized in $(N \setminus M)^{\lg(\overline{x})}$;
- 5. For all models M and all subsequences $\overline{x} \subseteq \overline{z}$, only finitely many mutually algebraic, quantifier free types in $S_{\overline{x}}(M)$ support an infinite array; and
- 6. T is mutually algebraic.

Proof. We begin by showing that $(2) \Leftrightarrow (3) \Leftrightarrow (4)$. Fix any non-empty subsequence $\overline{x} \subseteq \overline{z}$. The key observation for showing $(2) \Leftrightarrow (3)$ is that if X is any compact, Hausdorff space, then X is finite if and only if every element $a \in X$ is isolated. Suppose that (2) holds. To establish (3), note that $\operatorname{Supp}_{\overline{x}}(\mathbb{M})$ as a subspace of $S_{\overline{x}}(\mathbb{M})$, the Stone space of all quantifier free types is closed, and hence compact. As (2) implies it is finite as well, every $\mathbf{p} \in \operatorname{Supp}_{\overline{x}}(\mathbb{M})$ must be isolated in the subspace, hence array isolated.

Verifying that $(3) \Rightarrow (2)$ uses the converse of this. Fix $\overline{x} \subseteq \overline{z}$. Applying (3) to the model M yields that every element of $\operatorname{Supp}_{\overline{x}}(\mathbb{M})$ is isolated. As $\operatorname{Supp}_{\overline{x}}(\mathbb{M})$ is compact and Hausdorff, it must be finite.

 $(2) \Rightarrow (4)$ is easy. Assume (2). It suffices to prove (4) for all countable $M \leq N$. As \mathbb{M} is \aleph_1 -saturated, we may assume $N \leq \mathbb{M}$. But now, by Lemma 3.4, for any $\overline{c} \in (N \setminus M)^{\lg(\overline{x})}$, $\operatorname{tp}(\overline{c}/M)$ supports an infinite array. As any $p \in \operatorname{Supp}_{\overline{x}}(M)$ extends to some $\mathbf{p} \in \operatorname{Supp}(\mathbb{M})$, there are only finitely many such types.

Next, suppose (2) fails. Choose $\overline{x} \subseteq \overline{z}$ and a countable, infinite $Y \subseteq \operatorname{Supp}_{\overline{x}}(\mathbb{M})$. For each pair $\mathbf{p} \neq \mathbf{q}$, choose a formula $\varphi_{\mathbf{pq}}(\overline{x}, \overline{e}_{\mathbf{pq}}) \in \mathbf{p} \setminus \mathbf{q}$. Choose a countable $M \subseteq \mathbb{M}$ containing $\{\overline{e}_{\mathbf{pq}} : \mathbf{p} \neq \mathbf{q} \in Y\}$. Thus, $\{\mathbf{p}|M : \mathbf{p} \in Y\}$ is a countably infinite set of types, each of which support an infinite array. As \mathbb{M} is \aleph_1 -saturated, each such $\mathbf{p}|M$ is realized by some $\overline{c} \in \mathbb{M}^{\lg(\overline{x})}$. That $\overline{c} \cap M = \emptyset$ follows from the fact that $\mathbf{p}|M$ supports an infinite array.

Continuing on, that $(2) \Rightarrow (5)$ is similar to the proof of $(2) \Rightarrow (3)$, using the fact that whenever $M \leq \mathbb{M}$, every $p \in \text{QMA}(M)$ supports an infinite array, hence extends to a global type $\mathbf{p} \in \text{Supp}(\mathbb{M})$.

- $(5) \Rightarrow (2)$ is immediate from Conclusion 5.8.
- $(2) \Rightarrow (1)$. By (2), for each $\overline{x} \subseteq \overline{z}$, let $N(\overline{x}) := |\operatorname{Supp}_{\overline{x}}(\mathbb{M})|$. As $(2) \Rightarrow (3)$, every $p \in \operatorname{Supp}(\mathbb{M})$ is array isolated. For each $\overline{x} \subseteq \overline{z}$ and each $p \in \operatorname{Supp}_{\overline{x}}(\mathbb{M})$, choose an array isolating formula $\varphi_{\mathbf{p}}(\overline{x}, \overline{e}_{\mathbf{p}}) \in \mathbf{p}$ and let $D \subseteq \mathbb{M}$ be finite and contain all $\overline{e}_{\mathbf{p}}$ for all $\mathbf{p} \in \operatorname{Supp}(\mathbb{M})$. It is easily seen that for every $\overline{x} \subseteq \overline{z}$ and every countable $D \subseteq B \subseteq \mathbb{M}$, $S_{\overline{x}}(B)$ has exactly $N(\overline{x})$ types that support an infinite array. Moreover, each such $q \in \operatorname{Supp}_{\overline{x}}(B)$ has a unique restriction $q|D \in \operatorname{Supp}_{\overline{x}}(D)$ and a unique extension $\mathbf{q} \in \operatorname{Supp}_{\overline{x}}(\mathbb{M})$.

Towards finding an appropriate m, fix $\overline{x} \subseteq \overline{z}$ and partition each atomic $R(\overline{z}) \in L$ as $R(\overline{z}, \overline{w})$. For each $p \in \operatorname{Supp}_{\overline{x}}(\mathbb{M})$ with array isolating formula $\varphi_{\mathbf{p}}(\overline{x}, \overline{e}_{\mathbf{p}}) \in \mathbf{p}$, let $m(\mathbf{p}, \overline{x})$ be the maximum of the 2|L| numbers $m(\varphi_{\mathbf{p}}(\overline{x}, \overline{e}_{\mathbf{p}}), \pm R(\overline{x}, \overline{w}))$ obtained by Lemma 3.8. That is, apply the Lemma 2|L| times, once for each $R \in L$, and once for each $R \in L$.

The point is that if B is countable, $D \subseteq B \subseteq \mathbb{M}$, and $q \in S_{\overline{x}}(B)$ contains some $\varphi(\overline{x}, \overline{e}_{\mathbf{p}})$ and supports an $m(\mathbf{p}, \overline{x})$ -array, then for every $R(\overline{x}, \overline{b})$, $R(\overline{x}, \overline{b}) \in q$ if and only if $\varphi_{\mathbf{p}}(\overline{x}, \overline{e}_{\mathbf{p}}) \wedge R(\overline{x}, \overline{b})$ supports an $m(\mathbf{p}, \overline{x})$ -array if and only if $\varphi_{\mathbf{p}}(\overline{x}, \overline{e}_{\mathbf{p}}) \wedge R(\overline{x}, \overline{b})$ supports an infinite array if and only if $R(\overline{x}, \overline{b}) \in \mathbf{p}$. Thus, $q \subseteq \mathbf{p}$.

Let $m := \max\{m(\mathbf{p}, \overline{x}) : \overline{x} \subseteq \overline{z}, \mathbf{p} \in \operatorname{Supp}_{\overline{x}}(\mathbb{M})\}$. Combining the above, we see that for any countable $B \supseteq D$ and any $\overline{x} \subseteq \overline{z}$, exactly $N(\overline{x})$ types in $S_{\overline{x}}(B)$ support m-arrays. Thus, \mathbb{M} (and hence T by elementarily) has

uniformly bounded arrays.

- $(1) \Rightarrow (2)$ is also easy. Assume T has uniformly bounded arrays. Choose m and $\langle N_{\overline{x},m}^{\operatorname{arr}} : \overline{x} \subseteq \overline{z} \rangle$ from the definition. To establish (2), we claim that $|\operatorname{Supp}_{\overline{x}}(\mathbb{M})| \leq N_{\overline{x},m}^{\operatorname{arr}}$ for each $\overline{x} \subseteq \overline{z}$. To see this, fix $\overline{x} \subseteq \overline{z}$ and assume by way of contradiction there is a finite $Y \subseteq \operatorname{Supp}_{\overline{x}}(\mathbb{M})$ with $|Y| > N_{\overline{x},m}^{\operatorname{arr}}$. For each pair $\mathbf{p} \neq \mathbf{q}$ from Y, choose some $\varphi_{\mathbf{pq}}(\overline{x}, \overline{e}_{\mathbf{pq}}) \in \mathbf{p} \setminus \mathbf{q}$ and let $D \subseteq \mathbb{M}$ be finite, containing all these $\overline{e}_{\mathbf{pq}}$. Thus, the set $\{\mathbf{p}|D: \mathbf{p} \in Y\}$ are distinct elements of $S_{\overline{x}}(D)$. As each restriction $\mathbf{p}|D$ supports an infinite array, each supports an m-array, contradicting our definition of $N_{\overline{x},m}^{\operatorname{arr}}$.
- $(6)\Rightarrow (5)$: Suppose T is mutually algebraic. Then by Theorem 3.3 of [3], T is superstable, has nfcp, and moreover, any expansion of any model of T by unary predicates also has an nfcp theory. Assume by way of contradiction there are infinitely many distinct $\{\mathbf{p}_i:i\in\omega\}\subseteq\mathrm{QMA}_{\overline{x}}(\mathbb{M})$. Each of these types contains a mutually algebraic formula $\varphi_i(\overline{x},\overline{e}_i)$. We first use the fact that T has nfcp to show that there is a finite bound on the complexity of φ_i that works for an infinite subset of these types. Specifically, following Shelah's notation let $\Delta=\{R(\overline{x},\overline{w}):R\in L\}\cup\{\neg R(\overline{x},\overline{w}):R\in L\}\cup\{=,\neq\}$. In Shelah's notation, a mutually algebraic formula $\varphi(\overline{x},\overline{e})$ satisfies $R(\varphi(\overline{x},\overline{e}),\Delta,\aleph_0)\leq 1$. Thus, as in the proof of $(3)\Rightarrow (5)$ of Shelah's 'nfcp theorem' (II, Theorem 4.4 of [5]) there is some number k and a fixed

$$\theta(\overline{x}, \overline{u}) := \bigwedge_{j=1}^{k} \delta_j(\overline{x}, \overline{w}_j)$$

with each $\delta_j \in \Delta$, an infinite $I \subseteq \omega$, and $\overline{e}_i \in \mathbb{M}^{\lg(\overline{u})}$ for each $i \in I$ so that each $\theta(\overline{x}, \overline{e}_i) \in \mathbf{p}_i$ and is mutually algebraic. By reindexing, we may assume $I = \omega$, hence every \mathbf{p}_i contains a mutually algebraic formula of this form.

Fix a countable $M \leq \mathbb{M}$ containing the set of parameters $\{\overline{e}_i : i \in \omega\}$. For each $i \in \omega$, choose an uncountable array E_i of realizations of $\mathbf{p}_i|M$. Among these, as T is superstable, choose subsets $D_i \subseteq E_i$ with $|D_i| = i$ such that the union $D^* = \bigcup \{D_i : i \in \omega\}$ is a set of independent tuples over M (independence in the usual sense of non-forking). In particular, it follows that every $\overline{d}_i \in D_i$ is disjoint from each $\overline{d}_j \in D_j$ whenever $i \neq j$. In fact, $\overline{d}_j \cap \operatorname{acl}(M\overline{d}_i) = \emptyset$ for all such $\overline{d}_i, \overline{d}_j$. Let $H = \bigcup \bigcup \{D_i : i \in \omega\}$ (i.e., $H \subseteq \mathbb{M}^1$ and is the smallest set contains every coordinate of every \overline{d} occurring in some D_i). For each $i \in \omega$, let K_i consist of a single element from each $\overline{d} \in D_i$, i.e., K_i is an i-element subset of \mathbb{M} and let $K^* = \bigcup \{K_i : i \in \omega\}$. Next, we expand \mathbb{M} by adding three new unary predicates. Let $L' = L \cup \{U, V, W\}$ and let \mathbb{M}' be the expansion of \mathbb{M} defined by interpreting $U^{\mathbb{M}'} = M$ and $V^{\mathbb{M}'} = H$, and $W^{\mathbb{M}'} = K^*$. We will obtain a contradiction by showing that in \mathbb{M}' , the natural partition of H is \mathbb{M}' -definable, thereby giving a equivalence relation E on W with arbitrarily large finite classes, thereby contradicting $Th(\mathbb{M}')$ having nfcp.

To accomplish this, we first can define the 'mates' $\overline{d} \subseteq V$ of each $d \in W$ by by the definable $\exists \overline{u}[\bigwedge_{u \in \overline{u}} U(u) \land \theta(\overline{x}, \overline{u})]$. As $\theta(\overline{x}, \overline{u})$ is always mutually algebraic, that this defines the correct set follows by independence over M. As notation, for each $d \in W$, let mate(d) denote the tuple \overline{d} from V containing d. Now, define an equivalence relation E on W by

$$E(x,y) := \forall \overline{w} \in M^{\lg(\overline{w})} \bigwedge_{R \in L} R(\text{mate}(x), \overline{w}) \leftrightarrow R(\text{mate}(y), \overline{w})$$

Remark 6.2. The implication $(6) \Rightarrow (5)$ above really relies on counting quantifier-free mutually algebraic types that support infinite arrays. As an example, $Th(\mathbb{Z}, S)$ is mutually algebraic, but there are infinitely many mutually algebraic formulas $\varphi_n(x, y)$, each of which support infinite arrays. Take $\varphi_n(x, y) := \exists z_0 \ldots \exists z_n [(x = z_0) \land (y = z_n) \land \bigwedge_{i=0}^{n-1} S(z_n, z_{n+1})].$

 $(2-5) \Rightarrow (6)$: As we are assuming QMA(M) is finite, we adopt the notation of Section 5. Specifically, there is a fixed finite set D such that, for each $\mathbf{p} \in \mathrm{QMA}_{\overline{x}}(\mathbb{M})$, an array isolating formula as well as a mutually algebraic formula $\varphi(\overline{x}) \in \mathbf{p}$ are contained in $\mathrm{QF}_{\overline{x}}(D)$ and a fixed countable $M \leq \mathbb{M}$ with $D \subseteq M$. As notation, for each of the (finitely many) subsequences $\overline{x} \subseteq \overline{z}$ and each of the (finitely many) $\mathbf{p} \in \mathrm{QMA}_{\overline{x}}$, choose a formula $\varphi_{\mathbf{p}}(\overline{x}) \in \mathrm{QF}_{\overline{x}}(D)$ that is both mutually algebraic and array isolates \mathbf{p} .

We borrow a definition from [2].

Definition 6.3. Fix a non-empty $\overline{x} \subseteq \overline{z}$. Two formulas $\theta(\overline{x}), \psi(\overline{x})$ from $QF_{\overline{x}}(M)$ are equivalent off M if $\mathbb{M} \models \theta(\overline{c}) \leftrightarrow \psi(\overline{c})$ for all $\overline{c} \in (\mathbb{M} \setminus M)^{\lg(\overline{x})}$.

Claim. For every non-empty $\overline{x} \subseteq \overline{z}$ and for every $\theta(\overline{x}) \in QF_{\overline{x}}(M)$, there is $\theta^*(\overline{x}) \in QF_{\overline{x}}(M)$ that is a boolean combination of mutually algebraic formulas equivalent to $\theta(\overline{x})$ off M.

Proof. For each $\overline{x} \subseteq \overline{z}$ and each $\overline{c} \in (\mathbb{M} \setminus M)^{\lg(\overline{x})}$, choose a maximal mutually algebraic decomposition $\overline{c} = \overline{c}_1 \, \ldots \, \overline{c}_r$ generated by the partition $\mathcal{P} = \{\overline{x}_1, \ldots, \overline{x}_r\}$ of \overline{x} and, as notation, let \mathbf{p}_i be the unique array supporting

extension of $\operatorname{tp}(\overline{c}_i/M)$ for each i. Then, by Conclusion 5.8, $\operatorname{tp}(\overline{c}/M)$ (and also its unique extension to $AI_{\overline{x}}(\mathbb{M})$ is determined by the formula

$$\bigwedge_{i \in [r]} \varphi_{\mathbf{p}_i}(\overline{x}_i) \wedge \bigwedge_{\overline{x}_I, \mathbf{q} \in QMA_{\overline{x}_I}} \bigwedge \neg \varphi_{\mathbf{q}}(\overline{x}_I)$$

where, in the second conjunct, we are all over all unions of two or more subsequences $\{\overline{x}_i : i \in [r]\}$. Note that each of these formulas is visibly a boolean combination of mutually algebraic formulas over in QF(D). But now, off M, every formula $\theta(\overline{x})$ will be a (finite) disjunction of some of these formulas, so we finish.

With the Claim in hand, what follows is almost identical to the proof of Proposition 4.1 of [2], but we include it here for completeness.

We argue by induction on $\lg(\overline{x})$ that for every non-empty $\overline{x} \subseteq \overline{z}$, every $\theta(\overline{x}) \in \mathrm{QF}_{\overline{x}}(M)$ is equivalent to a boolean combination of mutually algebraic formulas from $\mathrm{QF}_{\overline{x}}(M)$. As $R(\overline{z}) \in \mathrm{QF}_{\overline{z}}(M)$, this is sufficient. For $\lg(\overline{x}) = 1$ this is immediate, as every $\theta(x) \in \mathrm{QF}_x(M)$ is mutually algebraic. Now fix a quantifier-free $\theta(\overline{x})$ with $\lg(\overline{x}) \geq 2$. By the Claim, there is a boolean combination of mutually algebraic formulas $\psi(\overline{x}) \in \mathrm{QF}_{\overline{x}}(M)$ that is equivalent to $\theta(\overline{x})$ off M. Write $\overline{x} = x \hat{y}$ with $\lg(x) = 1$. By compactness there is a finite set $F \subseteq M$ such that

$$\theta(x, \overline{y}) \leftrightarrow \bigvee_{m \in F} (x = m \land \theta(m, \overline{y})) \lor \bigwedge_{m \in F} (x \neq m \land \psi(x, \overline{y}))$$

By our inductive hypothesis the formula on the right hand side is as required.

7 Identifying mutually algebraic structures and theories in arbitrary languages

In this section, we let L be an arbitrary language.

Definition 7.1. For $R(\overline{z})$ any atomic L-formula let $L_R := \{R, =\}$, which is visibly finite relational. Given an L-structure M, let M_R denote the reduct of M to an L_R -structure.

The following definition should be compared with Definition 2.3.

Definition 7.2. Given an atomic L-formula $R(\overline{z})$ and an L-structure M, say R has uniformly bounded arrays in M if the L_R -structure M_R has uniformly bounded arrays (cf. Definition 2.3).

We use Theorem 6.1 to deduce local tests for mutual algebraicity without regard to the size of the language, nor the completeness of the theory.

Theorem 7.3. The following are equivalent for an L-structure M in an arbitrary language L:

- 1. M is mutually algebraic;
- 2. Every atomic $R(\overline{z})$ has uniformly bounded arrays in M;
- 3. For every atomic $R(\overline{z})$, the reduct M_R is mutually algebraic.

Proof. The equivalence of (2) and (3) follows by applying Theorem 6.1 to each of the reducts M_R (using that L_R is finite relational).

For $(3) \Rightarrow (1)$, in order to prove that M is mutually algebraic, by Theorem 2.1, it suffices to prove that every atomic $R(\overline{z})$ is equivalent to a boolean combination of mutually algebraic formulas. Fix an atomic $R(\overline{z})$. By (3) and Theorem 2.1 applied to M_R , $R(\overline{z})$ is equivalent to a boolean combination of quantifier-free mutually algebraic L_R -formulas. As a mutually algebraic formula in M_R is also mutually algebraic in M, the result follows.

Finally, assume (1). To obtain (2), fix an atomic $R(\overline{z})$. By Theorem 2.1, choose a finite set $\{\varphi_1(\overline{x}_1, \overline{e}_1), \ldots, \varphi_k(\overline{x}_k, \overline{e}_k)\}$ of mutually algebraic, quantifier-free L-formulas to which $R(\overline{z})$ is equivalent in M to some boolean combination (so each \overline{x}_i is a subsequence of \overline{z}). Expand L to L', adding new $\lg(\overline{x}_i)$ -ary relation symbols U_i and let M' be the definitional expansion interpreting each U_i as $\varphi_i(M, \overline{e}_i)$. Let $L_0 = \{U_1, \ldots, U_k\}$, $L_0^R = L_0 \cup \{R\}$, and let M_0 , M_0^R be the reducts of M' to L_0 and L_0^R , respectively. Note that M_0 and M_0^R have the same quantifier-free definable sets, and that M and M_0^R have identical reducts to L_R -structures.

As each L_0 -atomic formula is mutually algebraic, it follows from Theorem 2.7 of [3] that M_0 is mutually algebraic. As L_0 is finite relational, it follows from Theorem 6.1 that M_0 has uniformly bounded arrays. Since M_0 and M_0^R have the same quantifier-free definable sets, we conclude that M_0^R also has uniformly bounded arrays. It follows that $R(\overline{z})$ has uniformly bounded arrays in M_0^R , so $R(\overline{z})$ has uniformly bounded arrays in M as well.

The following Corollary now follows easily. Clause 2 is a slight strengthening of Theorem 2.1.

Corollary 7.4. Let L be an arbitrary language.

- 1. The reduct of a mutually algebraic L-structure is mutually algebraic;
- 2. If M is mutually algebraic, then every atomic $R(\overline{z})$ is equivalent to a boolean combination of mutually algebraic, quantifier-free L_R -formulas.
- **Proof.** (1) Let M be any mutually algebraic L-structure, let $L_0 \subseteq L$ be arbitrary, and let M_0 be the reduct of M to L_0 . Fix any atomic $R(\overline{z}) \in L_0$. Applying Theorem 7.3 to M gives M_R mutually algebraic. As this holds for all atomic $R \in L_0$, a second application of Theorem 7.3 implies M_0 is mutually algebraic.
 - (2) is also by Theorem 7.3.

Finally, we consider incomplete theories. The following Corollary follows immediately from Theorem 7.3, as by definition, an incomplete theory T is mutually algebraic if and only if every model $M \models T$ is mutually algebraic.

Corollary 7.5. A possibly incomplete theory T in an arbitrary language is mutually algebraic if and only if for every $M \models T$, every atomic $R(\overline{z})$ has uniformly bounded arrays in M.

References

- [1] A. Dolich, M. C. Laskowski, and A. Raichev, Model completeness for trivial, uncountably categorical theories of Morley rank one, *Archive for Math. Logic* **45** (2006) 931-945.
- [2] M. C. Laskowski, The elementary diagram of a trivial, weakly minimal structure is near model complete, *Arch. Math. Logic* **48** (2009) 15–24.
- [3] M. C. Laskowski, Mutually algebraic structures and expansions by predicates, *J. Symbolic Logic* **78** (2013), no. 1, 185–194.
- [4] M. C. Laskowski and C. A. Terry, Jumps in speeds of hereditary properties in finite relational languages, arXiv:1803.10575.
- [5] S. Shelah. Classification Theory and the Number of Nonisomorphic Models, North-Holland, 1978.