A Vaught’s conjecture toolbox

Chris Laskowski
University of Maryland

2nd Vaught’s conjecture conference
UC-Berkeley
1 June, 2015
Everything begins with the work of Robert Vaught.
Everything begins with the work of Robert Vaught.

Fix T, a complete theory in a countable language. Call T small if $S_n(\emptyset)$ is countable for each n.

Everything begins with the work of Robert Vaught.

Fix T, a complete theory in a countable language. Call T small if $S_n(\emptyset)$ is countable for each n.

A dichotomy:
Everything begins with the work of Robert Vaught.

Fix T, a complete theory in a countable language. Call T small if $S_n(\emptyset)$ is countable for each n.

A dichotomy:

- If T is not small, then there is a perfect set of complete types, hence $I(T, \aleph_0) = 2^{\aleph_0}$ [in fact, a perfect set of pairwise non-isomorphic models].
- If T is small, then T has a countable, saturated model and a prime model, which is also the unique countable atomic model.
$L_{\omega_1,\omega}$ is the extension of first-order logic, where we allow countable conjunctions and disjunctions in the recursive definition of formulas.
$L_{\omega_1,\omega}$ is the extension of first-order logic, where we allow countable conjunctions and disjunctions in the recursive definition of formulas.

Note: Both Upward and Downward Löwenheim-Skolem theorems fail! Ex: $(\mathbb{R}, +, \cdot, 0, 1)$.
$L_{\omega_1,\omega}$ is the extension of first-order logic, where we allow countable conjunctions and disjunctions in the recursive definition of formulas.

Note: Both Upward and Downward Löwenheim-Skolem theorems fail! Ex: $(\mathbb{R}, +, \cdot, 0, 1)$.

Upward LS is **DOOMED**
$L_{\omega_1,\omega}$ is the extension of first-order logic, where we allow countable conjunctions and disjunctions in the recursive definition of formulas.

Note: Both Upward and Downward Löwenheim-Skolem theorems fail! Ex: $(\mathbb{R}, +, \cdot, 0, 1)$.

Upward LS is **DOOMED**

However... DLS can be recovered by restricting to reasonable countable fragments.
The precise definition of a fragment is not important, only that:
For all countable $\Gamma \subseteq L_{\omega_1,\omega}$ there is a reasonable countable Δ satisfying $\Gamma \subseteq \Delta \subseteq L_{\omega_1,\omega}$.
The precise definition of a fragment is not important, only that:
For all countable $\Gamma \subseteq L_{\omega_1,\omega}$ there is a reasonable countable Δ satisfying $\Gamma \subseteq \Delta \subseteq L_{\omega_1,\omega}$.

- If Δ is a reasonable countable fragment, then for any L-structure M, there is a countable $M' \preceq_\Delta M$.
Moreover...
Moreover...

Definition (Keisler)

Let Δ be any reasonable countable fragment of $L_{\omega_1,\omega}$.

- A set $T \subseteq \Delta$ of sentences is **consistent** if there is a model $M \models T$;
- A consistent set $T \subseteq \Delta$ is **Δ-complete** if T decides ψ for every Δ-sentence ψ.
- A **complete Δ-n-type** $p(\bar{x})$ with respect to T is a maximal consistent (w.r.t. T) set of Δ-formulas with at most $(x_1 \ldots, x_n)$ free.
- A Δ-complete theory T is **small** if $S_n(T, \Delta)$ is countable for all $n \geq 1$.
Theorem (Keisler)

Let Δ be any reasonable countable fragment of $L_{\omega_1,\omega}$ and let T be Δ-complete.

- If T is not small, then there is a perfect set contained in $S_n(T, \Delta)$ for some n [hence a perfect set of pairwise non-isomorphic models];
- If T is small, then there is a unique (up to isomorphism) Δ-prime model, which is also the unique countable, Δ-atomic model.
Definition (Morley)

An $L_{\omega_1,\omega}$-sentence Φ is scattered if $S_n(\Phi, \Delta)$ is countable for every (reasonable) countable fragment Δ.
Definition (Morley)

An $L_{\omega_1,\omega}$-sentence Φ is scattered if $S_n(\Phi, \Delta)$ is countable for every (reasonable) countable fragment Δ.

Scatteredness does not depend on our choice of ‘reasonable’.
Definition (Morley)

An $L_{\omega_1,\omega}$-sentence Φ is scattered if $S_n(\Phi, \Delta)$ is countable for every (reasonable) countable fragment Δ.

Scatteredness does not depend on our choice of ‘reasonable’.

Proposition

TFAE for a sentence Φ of $L_{\omega_1,\omega}$:

1. Φ is scattered;
2. $\text{Mod}(\Phi)$ does not contain a perfect set of pairwise non-isomorphic models.
Fix a (countable) vocabulary L with at least one binary relation or function symbol.

$$X_L = \{ \text{all } L\text{-structures } M \text{ with universe } \omega \}$$

Basic open sets $U_{\varphi(m)} = \{ M \in X_L : M \models \varphi(m) \}$.
Fix a (countable) vocabulary L with at least one binary relation or function symbol.

$$X_L = \{ \text{all } L\text{-structures } M \text{ with universe } \omega \}$$

Basic open sets $U_{\varphi(m)} = \{ M \in X_L : M \models \varphi(m) \}$.

Then:

- X_L is a standard Borel space;
- For any $\Phi \in L_{\omega_1,\omega}$, $\text{Mod}(\Phi)$ is a Borel subset of X_L;
- The isomorphism relation \cong_Φ is a Σ^1_1-subset of $X_L \times X_L$ ($M \cong N$ iff $\exists f(\ldots)$).
Polish space of L-structures

Fix a (countable) vocabulary L with at least one binary relation or function symbol.

$$X_L = \{\text{all } L\text{-structures } M \text{ with universe } \omega\}$$

Basic open sets $U_{\varphi(\bar{m})} = \{M \in X_L : M \models \varphi(\bar{m})\}$.

Then:

- X_L is a standard Borel space;
- For any $\Phi \in L_{\omega_1,\omega}$, $\text{Mod}(\Phi)$ is a Borel subset of X_L;
- The isomorphism relation \cong_{Φ} is a Σ^1_1-subset of $X_L \times X_L$ ($M \cong N$ iff $\exists f(...)$).

Whether \cong_{Φ} is Borel or not will be an important distinction!
For M, N countable, $M \cong N$ iff there is a back-and-forth system of finite partial functions.
Isomorphisms of countable structures

For M, N countable, $M \cong N$ iff there is a back-and-forth system of finite partial functions.

Fix a countable M. A potential back-and-forth system F is a set of finite, partial functions $f : \bar{a} \rightarrow \bar{b}$ satisfying:

- F is closed under restrictions;
- If $f : \bar{a} \rightarrow \bar{b}$ is in F, then $qftp(\bar{a}) = qftp(\bar{b})$; and
- If $\sigma \in Aut(M)$, then each restriction $\sigma|_{\bar{a}} \in F$.

Examples: All $f : \bar{a} \rightarrow \bar{b}$ with:

- $qftp(\bar{a}) = qftp(\bar{b})$ (i.e., no additional restrictions); OR
- The first-order types $tp(\bar{a}) = tp(\bar{b})$; OR
- For any reasonable fragment Δ, $tp_\Delta(\bar{a}) = tp_\Delta(\bar{b})$.

Chris Laskowski University of Maryland
A Vaught’s conjecture toolbox
Fix M and a potential back-and-forth system F. We define a sequence of equivalence relations $\sim_\alpha (\alpha < \omega_1)$ that measure how close F is to being a back-and-forth system.
Fix M and a potential back-and-forth system F. We define a sequence of equivalence relations $\sim_\alpha (\alpha < \omega_1)$ that measure how close F is to being a back-and-forth system.

- $(M, \bar{a}) \sim_0 (M, \bar{b})$ iff $f : \bar{a} \mapsto \bar{b} \in F$;
- For λ limit, $(M, \bar{a}) \sim_\lambda (M, \bar{b})$ iff $(M, \bar{a}) \sim_\alpha (M, \bar{b})$ for all $\alpha < \lambda$;
- $(M, \bar{a}) \sim_{\alpha+1} (N, \bar{b})$ iff
 1. For all $c \in M$ there is $d \in M$ such that $(M, \bar{ac}) \sim_\alpha (M, \bar{bd})$; AND
 2. For all $d \in M$ there is $c \in M$ such that $(M, \bar{ac}) \sim_\alpha (M, \bar{bd})$.

Chris Laskowski University of Maryland
A Vaught’s conjecture toolbox
Note: If $(M, \bar{a}) \sim_{\alpha+\gamma} (M, \bar{b})$ then $(M, \bar{a}) \sim_{\alpha} (M, \bar{b})$.
Note: If \((M, \bar{a}) \sim_{\alpha+\gamma} (M, \bar{b})\) then \((M, \bar{a}) \sim_{\alpha} (M, \bar{b})\).

Proposition

TFAE for any \(M, \bar{a}, \bar{b}\) and \(F\):

1. \(\{\alpha < \omega_1 : (M, \bar{a}) \sim_{\alpha} (M, \bar{b})\}\) is uncountable;
2. For all \(\alpha < \omega_1\), \((M, \bar{a}) \sim_{\alpha} (M, \bar{b})\);
3. There is \(\sigma \in \text{Aut}(M)\) satisfying \(\sigma(\bar{a}) = \bar{b}\).
Note: If \((M, \bar{a}) \sim_{\alpha + \gamma} (M, \bar{b})\) then \((M, \bar{a}) \sim_{\alpha} (M, \bar{b})\).

Proposition

TFAE for any \(M, \bar{a}, \bar{b}\) and \(F\):

1. \(\{\alpha < \omega_1 : (M, \bar{a}) \sim_{\alpha} (M, \bar{b})\}\) is uncountable;
2. For all \(\alpha < \omega_1\), \((M, \bar{a}) \sim_{\alpha} (M, \bar{b})\);
3. There is \(\sigma \in \text{Aut}(M)\) satisfying \(\sigma(\bar{a}) = \bar{b}\).

Thus: For every \(M\) and \(F\), there is a least \(\alpha^* = \alpha^* (M, F) < \omega_1\) such that for all \(\bar{a}, \bar{b}\) from \(M\),

\[(M, \bar{a}) \sim_{\alpha^*} (M, \bar{b})\] iff there is \(\sigma \in \text{Aut}(M)\) with \(\sigma(\bar{a}) = \bar{b}\).
Note: If \((M, \bar{a}) \sim_{\alpha + \gamma} (M, \bar{b})\) then \((M, \bar{a}) \sim_{\alpha} (M, \bar{b})\).

Proposition

TFAE for any \(M, \bar{a}, \bar{b}\) and \(F\):

1. \(\{\alpha < \omega_1 : (M, \bar{a}) \sim_{\alpha} (M, \bar{b})\}\) is uncountable;
2. For all \(\alpha < \omega_1\), \((M, \bar{a}) \sim_{\alpha} (M, \bar{b})\);
3. There is \(\sigma \in \text{Aut}(M)\) satisfying \(\sigma(\bar{a}) = \bar{b}\).

Thus: For every \(M\) and \(F\), there is a least \(\alpha^* = \alpha^*(M, F) < \omega_1\) such that for all \(\bar{a}, \bar{b}\) from \(M\),

\[(M, \bar{a}) \sim_{\alpha^*} (M, \bar{b})\] iff there is \(\sigma \in \text{Aut}(M)\) with \(\sigma(\bar{a}) = \bar{b}\).

When \(F\) consists of qftp-preserving partial maps, \(\alpha^*(M, F) := SH(M)\), the Scott height of \(M\).
Now suppose $\Phi \in L_{\omega_1,\omega}$ and F is any of the above.

Put: $\alpha^*(\Phi, F) := \sup\{\alpha^*(M, F) : M \models \Phi\}$. We say Φ has bounded Scott heights if $\alpha^*(\Phi, F) < \omega_1$ for some/every F.

Chris Laskowski University of Maryland
A Vaught’s conjecture toolbox
Now suppose $\Phi \in L_{\omega_1,\omega}$ and F is any of the above.

Put: $\alpha^*(\Phi, F) := \sup\{\alpha^*(M, F) : M \models \Phi\}$. We say Φ has bounded Scott heights if $\alpha^*(\Phi, F) < \omega_1$ for some/every F.

Proposition

Φ has bounded Scott heights if and only if \cong_Φ is Borel in $X_L \times X_L$.
Now suppose $\Phi \in L_{\omega_1,\omega}$ and F is any of the above.

Put: $\alpha^*(\Phi, F) := \sup\{\alpha^*(M, F) : M \models \Phi\}$. We say Φ has bounded Scott heights if $\alpha^*(\Phi, F) < \omega_1$ for some/every F.

Proposition

Φ has bounded Scott heights if and only if \sim^Φ is Borel in $X_L \times X_L$.

Theorem (Morley)

Let $\Phi \in L_{\omega_1,\omega}$ be scattered. Then:

- $I(\Phi, \aleph_0) \leq \aleph_1$ always; and
- $I(\Phi, \aleph_0)$ is countable if and only if \sim^Φ is Borel.
Thus: Φ is a counterexample to Vaught’s conjecture if and only if Φ is scattered, with unbounded Scott heights.
Thus: Φ is a counterexample to Vaught's conjecture if and only if Φ is scattered, with unbounded Scott heights.

Discussion: What happened to first-order T??
Thus: Φ is a counterexample to Vaught’s conjecture if and only if Φ is scattered, with unbounded Scott heights.

Discussion: What happened to first-order T??

How can we ‘see’ $\text{Mod}(T)$ in X_L? Where does the compactness theorem fit in with all of this?
Thus: Φ is a counterexample to Vaught’s conjecture if and only if Φ is scattered, with unbounded Scott heights.

Discussion: What happened to first-order T??

How can we ‘see’ $Mod(T)$ in X_L? Where does the compactness theorem fit in with all of this?

Empirical fact: There are relatively few (known!) complete, first order T so that \cong_T is not Borel (without being Borel complete).
Thus: Φ is a counterexample to Vaught’s conjecture if and only if Φ is scattered, with unbounded Scott heights.

Discussion: What happened to first-order T??

How can we ‘see’ $\text{Mod}(T)$ in X_L? Where does the compactness theorem fit in with all of this?

Empirical fact: There are relatively few (known!) complete, first order T so that \equiv_T is not Borel (without being Borel complete).

$T = Th$(Binary splitting, refining eq. relations) has \equiv_T non-Borel.
Given a complete, first-order T, have relatively few methods for constructing models $M \models T$ with large Scott height.
Given a complete, first-order T, have relatively few methods for constructing models $M \models T$ with large Scott height.

If F is the potential back-and-forth system of complete types (i.e., $tp(\bar{a}) = tp(\bar{b})$) then a model M is homogeneous if and only if $\alpha^*(M, F) = 0$.

Given a complete, first-order T, have relatively few methods for constructing models $M \models T$ with large Scott height.

If F is the potential back-and-forth system of complete types (i.e., $tp(\bar{a}) = tp(\bar{b})$) then a model M is homogeneous if and only if $\alpha^*(M, F) = 0$.

Indications of little we know:
Given a complete, first-order T, have relatively few methods for constructing models $M \models T$ with large Scott height.

If F is the potential back-and-forth system of complete types (i.e., $tp(\bar{a}) = tp(\bar{b})$) then a model M is homogeneous if and only if $\alpha^*(M, F) = 0$.

Indications of little we know:

Benda’s conjecture (1965): If $1 < I(T, \aleph_0) < \aleph_0$, must T have a countable, universal, non-saturated model?
Given a complete, first-order \(T \), have relatively few methods for constructing models \(M \models T \) with large Scott height.

If \(F \) is the potential back-and-forth system of complete types (i.e., \(\forall a \exists b \forall x \forall y \left(\text{tp}(a) = \text{tp}(b) \Rightarrow x = y \right) \)) then a model \(M \) is homogeneous if and only if \(\alpha^*(M, F) = 0 \).

Indications of little we know:

Benda’s conjecture (1965): If \(1 < I(T, \aleph_0) < \aleph_0 \), must \(T \) have a countable, universal, non-saturated model?

Open (1989): If \(T \) is small and every countable universal model is saturated, must every countable weakly saturated (realize all \(n \)-types over \(\emptyset \)) model be saturated?
Success stories: Restrict to classes \mathcal{C} of complete, first order theories T and prove that any $T \in \mathcal{C}$ satisfies Vaught’s conjecture.
Success stories: Restrict to classes \mathcal{C} of complete, first order theories T and prove that any $T \in \mathcal{C}$ satisfies Vaught’s conjecture.

Mati Rubin proved that any complete theory T of linear orders is either \aleph_0-categorical or $I(T, \aleph_0) = 2^{\aleph_0}$.
Success stories: Restrict to classes \mathcal{C} of complete, first order theories T and prove that any $T \in \mathcal{C}$ satisfies Vaught’s conjecture.

Mati Rubin proved that any complete theory T of linear orders is either \aleph_0-categorical or $I(T, \aleph_0) = 2^{\aleph_0}$.

Laura Mayer proved that any complete o-minimal theory has either finitely many or else continuum many countable models.
Success stories: Restrict to classes \mathcal{C} of complete, first order theories T and prove that any $T \in \mathcal{C}$ satisfies Vaught’s conjecture.

Mati Rubin proved that any complete theory T of linear orders is either \aleph_0-categorical or $I(T, \aleph_0) = 2^{\aleph_0}$.

Laura Mayer proved that any complete o-minimal theory has either finitely many or else continuum many countable models.

Shelah/Harrington/Makkai proved Vaught’s conjecture for ω-stable theories.
Success stories: Restrict to classes \mathcal{C} of complete, first order theories T and prove that any $T \in \mathcal{C}$ satisfies Vaught’s conjecture.

Mati Rubin proved that any complete theory T of linear orders is either \aleph_0-categorical or $I(T, \aleph_0) = 2^{\aleph_0}$.

Laura Mayer proved that any complete o-minimal theory has either finitely many or else continuum many countable models.

Shelah/Harrington/Makkai proved Vaught’s conjecture for ω-stable theories.

In December, 1986 Harrington stated that “Vaught’s conjecture for superstable theories is the major open problem in stability theory.” Newelski and Buechler have made progress on this.