Borel complexity of complete, first order theories
(status report)

Chris Laskowski
University of Maryland

2nd Vaught’s conjecture conference
UC-Berkeley
3 June, 2015
Recall:

- \(X_L = \{ \text{all } L\text{-structures with universe } \omega \} \).
- \(S_\infty \) induces the logic action on \(X_L \).
- From Sam’s talk: A Borel subset \(Y \subseteq X_L \) is invariant under this action iff \(Y = \text{Mod}(\Phi) \) for some \(\Phi \in L_{\omega_1,\omega} \).

Theorem (Friedman-Stanley)

With respect to Borel reducibility, among all pairs \((\text{Mod}(\Phi), \equiv_\Phi) \), there is a maximum Borel degree.
Definition
We say \equiv_Φ is **Borel complete** if it is Borel equivalent to this maximum degree.

Examples: (Friedman-Stanley) The following classes of structures $(\text{Mod}(\Phi), \equiv_\Phi)$ are all Borel complete:

- Directed graphs;
- Symmetric graphs;
- Linear orders;
- Fields;
- Subtrees of $\omega^{<\omega}$.
Throughout the whole of this talk, T will denote a complete, first order theory in a countable language.

- Interested in the Borel complexity of $(\text{Mod}(T), \cong_T)$.
Jumps: Suppose T is a complete L-theory. Let $L^+ = L \cup \{E\}$ and T^+ be the theory specifying:

- E is an equivalence relation with infinitely many classes;
- Each E-class is a model of T.

Then \cong_{T^+} is Borel equivalent to the jump $(\cong_T)^+$.
Friedman-Stanley tower: Let

- \cong_0 be $id(\omega)$ [Think: Countably many non-isomorphic models.]
- \cong_1 be $id(2^\omega)$ [Countable sets of integers, i.e., reals]
- \cong_2 be $(\cong_1)^+$ [Countable sets of reals]

In general, given \cong_α, let

- $\cong_{\alpha+1}$ be the jump $(\cong_\alpha)^+$ (i.e., ‘countable sets of \cong_α’)

Note: $\cong_T <_B \cong_0$ iff T has finitely many models.

Of special note: \cong_2 is ‘Countable sets of reals.’
Fundamental Dichotomy: Is \cong_T (as a subset of $\text{Mod}(T) \times \text{Mod}(T)$) Borel or properly Σ^1_1?
Fundamental Dichotomy: Is \(\cong_T \) (as a subset of \(\text{Mod}(T) \times \text{Mod}(T) \)) Borel or properly \(\Sigma^1_1 \)?

Easy: If \(\cong_T \) is Borel complete, then \(\cong_T \) is properly \(\Sigma^1_1 \).
Fundamental Dichotomy: Is \cong_T (as a subset of $\text{Mod}(T) \times \text{Mod}(T)$) Borel or properly Σ^1_1?

Easy: If \cong_T is Borel complete, then \cong_T is properly Σ^1_1.

Note: Until recently, all known examples of \cong_T properly Σ^1_1 were Borel complete, hence \geq_B every $\cong_{T'}$.

This led me (and maybe others) to think of every instance of \cong_T properly Σ^1_1 as being $>_{B} \cong_{T'}$ whenever $\cong_{T'}$ is Borel.

This is not always the case!
Effect of standard model-theoretic operations:
Effect of standard model-theoretic operations:

- Borel complexity is ill-behaved under reducts.

- There are complete $T_0 \subseteq T_1 \subseteq T_2$ (in languages $L_0 \subseteq L_1 \subseteq L_2$) such that $\text{Mod}(T_0)$ is \aleph_0-categorical, $\text{Mod}(T_1)$ is Borel complete, and $\text{Mod}(T_2)$ has countably many models.
• **Naming (or deleting) constants** is only partially understood.

Throughout most of model theory (e.g., showing \(I(T, \aleph_0) = 2^{\aleph_0} \) or the configurations determining the spectrum \(I(T, \kappa) \) for \(\kappa > \aleph_0 \)), naming or deleting finitely many constants is **free**.
Naming (or deleting) constants is only partially understood. Throughout most of model theory (e.g., showing \(I(T, \aleph_0) = 2^{\aleph_0} \) or the configurations determining the spectrum \(I(T, \kappa) \) for \(\kappa > \aleph_0 \)), naming or deleting finitely many constants is free.

Open: Can Borel completeness be gained or lost by naming a constant?
Naming (or deleting) constants is only partially understood.

Throughout most of model theory (e.g., showing $I(T, \aleph_0) = 2^{\aleph_0}$ or the configurations determining the spectrum $I(T, \kappa)$ for $\kappa > \aleph_0$), naming or deleting finitely many constants is free.

Open: Can Borel completeness be gained or lost by naming a constant?

Best result so far:

Proposition (Rast)

Let T be complete, and $T(c)$ an expansion formed by naming a constant. Then \cong_T is Borel if and only if $\cong_{T(c)}$ is Borel.
Naming or deleting infinitely many constants is hopeless.
Naming or deleting infinitely many constants is hopeless.

Ulrich: Let M denote the (unique) countable random graph, and let $(M, c_n)_{n \in \omega}$ be any expansion such that $c_i \neq c_j$ for distinct i, j. Then $Th(M)$ is \aleph_0-categorical, while $Th((M, c_n)_{n \in \omega})$ is Borel complete.
Naming or deleting infinitely many constants is hopeless.

Ulrich: Let M denote the (unique) countable random graph, and let $(M, c_n)_{n \in \omega}$ be any expansion such that $c_i \neq c_j$ for distinct i, j. Then $Th(M)$ is \aleph_0-categorical, while $Th((M, c_n)_{n \in \omega})$ is Borel complete.

A later example will give a complete theory T such that \cong_T is properly Σ^1_1, but for any model M, the isomorphism relation $\cong_{El(M)}$ of the elementary diagram of M is Borel.
Only general result to date.

Marker: If T is not small, then $\equiv_2 \leq_B \equiv_T$, i.e., ‘countable sets of reals’ Borel reduce to $(\text{Mod}(T), \equiv_T)$.
Only general result to date.

Marker: If T is not small, then $\equiv_2 \leq_B \equiv_T$, i.e., ‘countable sets of reals’ Borel reduce to $(\text{Mod}(T), \equiv_T)$.

Paradigm: ‘Independent unary predicates’ $L = \{U_n : n \in \omega\}$, T says ‘Every finite boolean combination of $\pm U_n$ is consistent.’

Complete 1-types correspond to branches through $2^{<\omega}$ (i.e., reals) and for each branch, one can choose how many elements realize it.
Theorem (Rast/Sahota)

If T is o-minimal, then \equiv_T is one of the following:

- $<_B \equiv_0$ (finitely many models);
- Borel equivalent to \equiv_1 (reals);
- Borel equivalent to \equiv_2 (countable sets of reals);
- Borel complete.

Note: The proof of this theorem would have been massively simpler if one could name a constant!
Complete theories of linear orders with (countably many) unary predicates

Theorem (Rast)

If T is a complete theory of linear orders with unary predicates, then \cong_T is one of the following:

- $<_B \cong_0$ (finitely many models);
- Borel equivalent to \cong_1 (reals);
- Borel equivalent to \cong_2 (countable sets of reals);
- Borel complete.
ω-stable theories

Note: T ω-stable implies T small ($S_n(\emptyset)$ countable for each n)

Theorem (L-Shelah)

If T is ω-stable and has eni-DOP or is eni-DEEP, then \(\equiv_T \) is Borel complete.

Note: The proof of this would have been at least 10 pages shorter if one could name a constant!

Theorem (Rast, streamlining Koerwien)

For each ordinal $\alpha < \omega_1$, there is an ω-stable theory T_α such that $\equiv_{(T_\alpha)}$ is Borel equivalent to \equiv_α (the α’th jump).
\(\omega\)-stable theories (cont.)

Theorem (Koerwien+Ulrich)

There is an \(\omega\)-stable, depth 2 theory \(K\) for which

- \(\cong_K\) is properly \(\Sigma^1_1\) but
- \(\cong_K\) is NOT Borel complete.
Refining equivalence relations

Let \(L = \{ E_n : n \in \omega \} \) and consider \(L \)-theories \(T \) that say:

- Each \(E_n \) is an equivalence relation;
- \(E_0 \) consists of a single class;
- Each \(E_{n+1} \) refines \(E_n \), i.e., \(E_{n+1}(a, b) \) implies \(E_n(a, b) \).

In order to make \(T \) complete, need only say how many classes \(E_{n+1} \) partitions each \(E_n \)-class into.
Case 1: REF_ω says: Each E_{n+1}-class partitions each E_n-class into infinitely many classes.

- REF_ω is small, BUT
- REF_ω is Borel complete.
Case 1: REF_ω says: Each E_{n+1}-class partitions each E_n-class into infinitely many classes.

- REF_ω is small, BUT
- REF_ω is Borel complete.

Case 2: REF_2 says: Each E_{n+1}-class partitions each E_n-class into 2 classes.

Theorem (L-Rast-Ulrich)

The isomorphism relation on REF_2 is properly Σ^1_1 but is not Borel complete.
Hybrids: Given $m \leq \omega$, let T_m be:

- For $n < m$, E_{n+1} partitions each E_n-class into infinitely many classes;
- For $n \geq m$, E_{n+1} partitions each E_n-class into 2 classes.

Then:

- T_0 is REF_2, T_ω is REF_ω;
- For all m, \equiv_{T_m} is properly Σ^1_1;
- For all m, T_m is small;
- $\equiv_{T_0} < B \equiv_{T_1} < B \equiv_{T_2} < B \cdots < B \equiv_{T_\omega}$.
Suppose $M \models REF_2$ is countable. Then the elementary diagram $El(M)$ is essentially the same as ‘Independent unary predicates.’ In particular:

- $\cong_{EI(M)}$ is Borel equivalent to \cong_2 (countable sets of reals);
- Thus, $\cong_{EI(M)}$ is Borel; BUT
- Its restriction to $L = \{E_n : n \in \omega\}$ is REF_2 and \cong_{REF_2} is properly Σ^1_1
A final thought: It has become empirically clear that ‘Vaught’s conjecture for superstable T’ is much more involved than ‘Vaught’s conjecture for ω-stable T.’
A final thought: It has become empirically clear that ‘Vaught’s conjecture for superstable T’ is much more involved than ‘Vaught’s conjecture for ω-stable T.’

Fact: If T is superstable, but not ω-stable, then T is either not small, or else has a type of infinite multiplicity.
A final thought: It has become empirically clear that ‘Vaught’s conjecture for superstable T’ is much more involved than ‘Vaught’s conjecture for ω-stable T.’

Fact: If T is superstable, but not ω-stable, then T is either not small, or else has a type of infinite multiplicity.

REF_2 is the paradigm of a superstable theory with infinite multiplicity!