$\omega\text{-stable}$ theories: Do uncountable languages matter?

Chris Laskowski

University of Maryland

Midwest Model Theory Conference in honor of John T. Baldwin 5 April, 2008

Chris Laskowski

University of Maryland

Image: A matrix of the second seco

ω -stable theories

This work is joint with Saharon Shelah.

Fix a (complete) ω -stable theory.

So:

- If $p \in S(A)$ is stationary, there is a finite $A_0 \subseteq A$ such that p does not fork over A_0 and $p|A_0$ is stationary.
- Thus, M a-saturated $\Leftrightarrow M \omega$ -saturated.
- Prime models exist over arbitrary sets. (Unique up to ≅, but not unique!)

A type $p \in S(A)$ is ENI (eventually non-isolated) if p is stationary, regular, and for some finite $A_0 \subseteq A$ over which p is based and stationary, there is a countable $M \supseteq A_0$ with dim $(p|A_0, M) < \aleph_0$.

We do not require p to be strongly regular!

Chris Laskowski

A type $p \in S(A)$ is ENI (eventually non-isolated) if p is stationary, regular, and for some finite $A_0 \subseteq A$ over which p is based and stationary, there is a countable $M \supseteq A_0$ with dim $(p|A_0, M) < \aleph_0$.

We do not require *p* to be strongly regular!

Advantage

The class of ENI types is closed under non-orthogonality and automorphisms of \mathfrak{C} .

Chris Laskowski

Image: A matrix and a matrix

A theory T has ENI-NDOP if, for all independent triples $M_0 = M_1 \cap M_2$ of a-saturated models, for all a-prime models $N \supseteq M_1 \cup M_2$, and for all ENI p,

 $p \not\perp N \Rightarrow p \not\perp M_i$ for some i < 3.

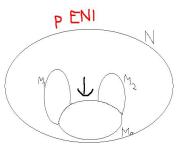


Image: A mathematical states and a mathem

 ω -stable theories: Do uncountable languages matter?

Chris Laskowski

TFAE for an ω -stable theory T:

• T has ENI-NDOP

Chris Laskowski

University of Maryland

・ロト ・ 日 ト ・ 日 ト ・

TFAE for an ω -stable theory T:

- T has ENI-NDOP
- The prime model over any independent triple of countable saturated models is saturated

Chris Laskowski

Image: A mathematical states of the state

TFAE for an ω -stable theory T:

- T has ENI-NDOP
- The prime model over any independent triple of countable saturated models is saturated
- T has NOTOP

Chris Laskowski

Image: A matrix and A matrix

TFAE for an ω -stable theory T:

- T has ENI-NDOP
- The prime model over any independent triple of countable saturated models is saturated
- T has NOTOP i.e., there is NO p(x̄, ȳ, z̄) such that for any graph (G, E) we can find {ā_g : g ∈ G} and a model M_G such that p(x̄, ā_g, ā_h) is omitted in M_G iff G ⊨ E(g, h)

ENI-supportive types

A stationary, regular type tp(b/A) is *ENI-supportive* if tp(b/A) is ENI OR there is an ENI $q \in S(C)$, $C \supseteq Ab$ and dominated by b over A, with $q \perp A$.

Think: tp(b/A) is ENI or lies below an ENI type in a decomposition tree.

Chris Laskowski

Image: A matrix and A matrix

ENI-supportive types

A stationary, regular type tp(b/A) is *ENI-supportive* if tp(b/A) is ENI OR there is an ENI $q \in S(C)$, $C \supseteq Ab$ and dominated by b over A, with $q \perp A$.

Think: tp(b/A) is ENI or lies below an ENI type in a decomposition tree.

Fact: T superstable, \mathbb{P} any class of stationary, regular types closed under non-orthogonality and automorphisms of \mathfrak{C} . Then:

- T has \mathbb{P} -NDOP implies T has $supp(\mathbb{P})$ -NDOP
- $q \in supp(\mathbb{P})$ of depth > 0 implies q trivial.

Image: A match a ma

ENI-supportive decompositions

Definition

A prime decomposition of M^* sequence $\langle M_\eta, a_\eta : \eta \in I \rangle$ indexed by a tree (I, \leq) satisfying:

- $\{M_{\eta} : \eta \in I\}$ is an independent tree of countable, elementary substructures of M^*
- $M_{\langle\rangle}$ is prime
- For every η ∈ I, {a_ν : ν ∈ Succ_l(η)} is a maximal independent (over M_η) set of ENI-supportive types satisfying tp(a_ν/M_η) ⊥ M_{η⁻} (when η ≠ ⟨⟩)
- For all $\nu \neq \langle \rangle$, M_{ν} is prime over $M_{\nu^-} \cup \{a_{\nu}\}$

•
$$M^*$$
 is prime over $\bigcup \{M_\eta : \eta \in I\}$.

Image: A matrix and A matrix

Lambda-Borel reducibility

Existence of decompositions

Theorem (proved independently by Koerwien)

If T is ω -stable with ENI-NDOP, then every model of T has a prime decomposition.

Chris Laskowski

University of Maryland

Image: A matrix of the second seco

Lambda-Borel reducibility

Existence of decompositions

Theorem (proved independently by Koerwien)

If T is ω -stable with ENI-NDOP, then every model of T has a prime decomposition.

An ω -stable T with ENI-NDOP is *ENI-deep* if some model of T has a prime decomposition with an infinite branch.

Chris Laskowski

Fix countable vocabularies τ_1, τ_2 .

For i = 1, 2

- $\mathscr{S}_i = \{ all \ \tau_i \text{-structures with universe } \omega \}$ with the usual topology.
- X_i be a Borel subset of \mathscr{S}_i , closed under \cong .
- E_i be an equivalence relation on X_i extending \cong .

 $(X_1, E_1) \leq_B (X_2, E_2)$ iff there is a Borel $f : X_1 \to X_2$ (relative to topologies on $\mathscr{S}_1, \mathscr{S}_2$) such that for all $\mathfrak{A}, \mathfrak{B} \in X_1$

$$\mathfrak{A}E_1\mathfrak{B} \Longleftrightarrow f(\mathfrak{A})E_2f(\mathfrak{B})$$

Image: A math a math

Borel completeness

Fact: (*Graphs*, \cong) is maximal w.r.t. Borel reducibility.

Definition

(X, E) is Borel complete if $(Graphs, \cong) \leq_B (X, E)$.

Routine: If T is ω -stable with ENI-DOP, then $(Mod_{\aleph_0}(T),\cong)$ is Borel complete.

Chris Laskowski

(日) (同) (三) (

Borel completeness

Fact: (*Graphs*, \cong) is maximal w.r.t. Borel reducibility.

Definition

(X, E) is Borel complete if $(Graphs, \cong) \leq_B (X, E)$.

Routine: If T is ω -stable with ENI-DOP, then $(Mod_{\aleph_0}(T),\cong)$ is Borel complete. Pf: Use OTOP!

Chris Laskowski

(日) (同) (三) (

A surprise: (Friedman-Stanley) (subtrees of ${}^{<\omega}\omega,\cong$) is Borel complete.

This suggests: T ENI-NDOP, ENI-deep implies $(Mod_{\aleph_0}(T),\cong)$ Borel complete.

Sketch: Given *I*, form an independent tree $\langle M_{\eta}, a_{\eta} : \eta \in I \rangle$ indexed by *I* in a canonical way, and let M_I be prime over $\bigcup \{M_{\eta} : \eta \in I\}$.

- If $I \cong J$ as trees, then $M_I \cong M_J$ (easy).
- If $M_I \cong M_J$, then $I \cong J$???

The issue: Given a countable model of T, how unique is its decomposition?

(日) (同) (三) (

 $[\]omega$ -stable theories: Do uncountable languages matter?

Idea:

Chris Laskowski

▶ ৰ ≣ ▶ ≣ ৩৭৫ University of Maryland

▲□▶ ▲圖▶ ▲温▶ ▲温≯

Idea: Temporarily forget about countable models!

Chris Laskowski

University of Maryland

Image: A math a math

Idea: Temporarily forget about countable models! Fix an ω -stable theory T with ENI-NDOP and fix $M^* \models T \omega$ -saturated.

Chris Laskowski

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Idea: Temporarily forget about countable models! Fix an ω -stable theory T with ENI-NDOP and fix $M^* \models T$ ω -saturated.

 $R(M^*) = \{p \in S(M^*) : p \text{ is ENI-supportive}\}$

Chris Laskowski

University of Maryland

Image: A math a math

Idea: Temporarily forget about countable models! Fix an ω -stable theory T with ENI-NDOP and fix $M^* \models T$ ω -saturated.

$$R(M^*) = \{p \in S(M^*) : p \text{ is ENI-supportive}\}$$

We can use subsets of $R(M^*)$ to 'measure' ENI-supportive types tp(c/A) with $A \subseteq M^*$ finite and $c \in M^*$.

A (*c*, *A*)-decomposition of M^* is a sequence $\langle M_\eta, a_\eta : \eta \in I \rangle$ such that:

- (1, \trianglelefteq) is a tree in which $\langle 0 \rangle$ is the unique successor of $\langle \rangle$
- $A\subseteq M_{\langle
 angle}$, $c=a_{\langle 0
 angle}$ and ${
 m tp}(c/M_{\langle
 angle})$ does not fork over A
- $\{M_{\eta}: \eta \in I\}$ is an independent tree of ω -saturated submodels of M^* ;
- For all ν ≠ ⟨⟩ if tp(b/M_ν⁻) ENI-supportive and tp(b/M_ν) forks over M_ν⁻, then tp(b/M_ν⁻ ∪ {a_ν}) forks over M_ν⁻.
- For all η ≠ ⟨⟩ {a_ν : ν ∈ Succ_I(η)} ⊆ M* is a maximal independent over M_η set of realizations of ENI-supportive types.
- (I, \trianglelefteq) is maximal with respect to these conditions.

Image: A matrix and A matrix

A (*c*, *A*)-decomposition of M^* is a sequence $\langle M_\eta, a_\eta : \eta \in I \rangle$ such that:

- (1, \trianglelefteq) is a tree in which $\langle 0 \rangle$ is the unique successor of $\langle \rangle$
- $A\subseteq M_{\langle
 angle}$, $c=a_{\langle 0
 angle}$ and ${
 m tp}(c/M_{\langle
 angle})$ does not fork over A
- $\{M_\eta:\eta\in I\}$ is an independent tree of ω -saturated submodels of $M^*;$
- For all ν ≠ ⟨⟩ if tp(b/M_ν⁻) ENI-supportive and tp(b/M_ν) forks over M_ν⁻, then tp(b/M_ν⁻ ∪ {a_ν}) forks over M_ν⁻.
- For all η ≠ ⟨⟩ {a_ν : ν ∈ Succ_I(η)} ⊆ M* is a maximal independent over M_η set of realizations of ENI-supportive types.
- (I, \trianglelefteq) is maximal with respect to these conditions.

M^* need not be a-prime over $\bigcup \{M_\eta : \eta \in I\}$!

Chris Laskowski

Fix c, A from M^* with A finite and tp(c/A) ENI-supportive.

 $X(c, A) = \{ q \in R(M^*) : q \not\perp M_{\eta} \text{ for some } (c, A) \text{-decomposition} \\ \langle M_{\eta}, a_{\eta} : \eta \in I \rangle \text{ of } M^* \text{ and some } \eta \neq \langle \rangle \}.$

Theorem (Shelah)

- X(c, A) DOES NOT DEPEND on our choice of (c, A)-decompositions (!)
- For any ω-saturated decomposition (N_η, b_η : η ∈ I) of M*, for any η, ν ∈ I,
 - If $\eta \trianglelefteq \nu$ then $X(b_{\nu}, Cb(b_{\nu}/M_{\nu^{-}})) \subseteq X(b_{\eta}, Cb(b_{\eta}/M_{\eta^{-}}))$
 - If η, ν are incomparable then $X(b_{\eta}, Cb(b_{\eta}/M_{\eta^{-}}))$ and $X(b_{\nu}, Cb(b_{\nu}/M_{\nu^{-}}))$ are disjoint.

Chris Laskowski

Back to countable models

Definition

A prime decomposition $\langle M_\eta, a_\eta : \eta \in I \rangle$ is *tidy* if for all $\eta \in I$,

- $\{\operatorname{tp}(a_{\nu}/M_{\eta}): \nu \in Succ_{I}(\eta)\}$ is finite;
- For each $\nu \in Succ_{I}(\eta)$ there are infinitely many $\nu' \in Succ_{I}(\eta)$ such that $tp(a_{\nu'}/M_{\eta}) = tp(a_{\nu}/M_{\eta})$;
- If $\nu, \gamma \in Succ_{I}(\eta)$ and $tp(a_{\nu}/M_{\eta}) \neq tp(a_{\gamma}/M_{\eta})$, then $tp(a_{\nu}/M_{\eta}) \perp tp(a_{\gamma}/M_{\eta})$.

Will see: Prime decompositions of a tidy model are 'almost isomorphic'.

A nonempty subtree $J \subseteq I$ of a tree is *large* if for all $\eta \in J$, $Succ_I(\eta) \setminus J$ is finite.

Chris Laskowski

University of Maryland

Image: A math a math

A nonempty subtree $J \subseteq I$ of a tree is *large* if for all $\eta \in J$, $Succ_I(\eta) \setminus J$ is finite.

Definition

Two trees I_1, I_2 are almost isomorphic $(I_1 \cong^* I_2)$ if they have isomorphic large subtrees.

Chris Laskowski

(日) (同) (三) (

A nonempty subtree $J \subseteq I$ of a tree is *large* if for all $\eta \in J$, $Succ_I(\eta) \setminus J$ is finite.

Definition

Two trees I_1, I_2 are almost isomorphic $(I_1 \cong^* I_2)$ if they have isomorphic large subtrees.

Lemma

(subtrees of ${}^{<\omega}\omega,\cong^*$) are Borel complete.

Chris Laskowski

University of Maryland

・ロト ・回ト ・ヨト ・ヨ

T ω -stable, ENI-NDOP, $M \models T$. If $\langle M_{\eta}^{1}, a_{\eta} : \eta \in I \rangle$ and $\langle M_{\eta}^{2}, b_{\eta} : \eta \in J \rangle$ are both tidy decompositions of M, then $(I \setminus Leaves(I))$ and $(J \setminus Leaves(J))$ are almost isomorphic.

Chris Laskowski

University of Maryland

T ω -stable, ENI-NDOP, $M \models T$. If $\langle M_{\eta}^{1}, a_{\eta} : \eta \in I \rangle$ and $\langle M_{\eta}^{2}, b_{\eta} : \eta \in J \rangle$ are both tidy decompositions of M, then $(I \setminus Leaves(I))$ and $(J \setminus Leaves(J))$ are almost isomorphic.

Ideas: By removing the leaves, all relevant types are trivial.

Chris Laskowski

University of Maryland

T ω -stable, ENI-NDOP, $M \models T$. If $\langle M_{\eta}^{1}, a_{\eta} : \eta \in I \rangle$ and $\langle M_{\eta}^{2}, b_{\eta} : \eta \in J \rangle$ are both tidy decompositions of M, then $(I \setminus Leaves(I))$ and $(J \setminus Leaves(J))$ are almost isomorphic.

Ideas: By removing the leaves, all relevant types are trivial.

• Choose a large, independent tree $\langle N_{\nu}, c_{\nu} : \nu \in K_0 \rangle$ of ω -saturated models, independent from M over \emptyset .

Theore<u>m</u>

T ω -stable, ENI-NDOP, $M \models T$. If $\langle M_{\eta}^{1}, a_{\eta} : \eta \in I \rangle$ and $\langle M_{\eta}^{2}, b_{\eta} : \eta \in J \rangle$ are both tidy decompositions of M, then $(I \setminus Leaves(I))$ and $(J \setminus Leaves(J))$ are almost isomorphic.

Ideas: By removing the leaves, all relevant types are trivial.

- Choose a large, independent tree $\langle N_{\nu}, c_{\nu} : \nu \in K_0 \rangle$ of ω -saturated models, independent from M over \emptyset .
- Let M^* be a-prime over $M \cup \bigcup \{N_{\nu} : \nu \in K_0\}$ and choose an ω -saturated decomposition $\langle N_{\nu}, c_{\nu} : \nu \in K \rangle$ of M^* extending $\langle N_{\nu}, c_{\nu} : \nu \in K_0 \rangle$.

T ω -stable, ENI-NDOP, $M \models T$. If $\langle M_{\eta}^{1}, a_{\eta} : \eta \in I \rangle$ and $\langle M_{\eta}^{2}, b_{\eta} : \eta \in J \rangle$ are both tidy decompositions of M, then $(I \setminus Leaves(I))$ and $(J \setminus Leaves(J))$ are almost isomorphic.

Ideas: By removing the leaves, all relevant types are trivial.

- Choose a large, independent tree $\langle N_{\nu}, c_{\nu} : \nu \in K_0 \rangle$ of ω -saturated models, independent from M over \emptyset .
- Let M^* be a-prime over $M \cup \bigcup \{N_{\nu} : \nu \in K_0\}$ and choose an ω -saturated decomposition $\langle N_{\nu}, c_{\nu} : \nu \in K \rangle$ of M^* extending $\langle N_{\nu}, c_{\nu} : \nu \in K_0 \rangle$.

• For $\eta \in I$, for all but finitely many $\gamma \in Succ_I(\eta) \setminus Leaves(I)$ there is a unique $\nu \in K$ such that

$$X(a_{\gamma}/Cb(a_{\gamma}/M^{1}_{\gamma^{-}})) = X(c_{\nu}/Cb(c_{\nu}/N_{\nu^{-}}))$$
 (and dually for $\langle M^{2}_{\eta} : \eta \in J \rangle$).

T ω -stable, ENI-NDOP, $M \models T$. If $\langle M_{\eta}^{1}, a_{\eta} : \eta \in I \rangle$ and $\langle M_{\eta}^{2}, b_{\eta} : \eta \in J \rangle$ are both tidy decompositions of M, then $(I \setminus Leaves(I))$ and $(J \setminus Leaves(J))$ are almost isomorphic.

Ideas: By removing the leaves, all relevant types are trivial.

• Choose a large, independent tree $\langle N_{\nu}, c_{\nu} : \nu \in K_0 \rangle$ of ω -saturated models, independent from M over \emptyset .

• Let M^* be a-prime over $M \cup \bigcup \{N_{\nu} : \nu \in K_0\}$ and choose an ω -saturated decomposition $\langle N_{\nu}, c_{\nu} : \nu \in K \rangle$ of M^* extending $\langle N_{\nu}, c_{\nu} : \nu \in K_0 \rangle$.

• For $\eta \in I$, for all but finitely many $\gamma \in Succ_I(\eta) \setminus Leaves(I)$ there is a unique $\nu \in K$ such that $X(a_{\gamma}/Cb(a_{\gamma}/M^1_{\gamma^-})) = X(c_{\nu}/Cb(c_{\nu}/N_{\nu^-}))$ (and dually for $\langle M^2_{\eta} : \eta \in J \rangle$).

• Composing these partial maps gives the almost isomorphism.

Chris Laskowski

University of Maryland

Corollary

T ω -stable, ENI-NDOP, ENI-deep \Rightarrow (Mod_{\aleph_0}(T), \cong) is Borel complete.

Chris Laskowski

University of Maryland

Image: A mathematical states and a mathem

Question: Are there ω -stable, ENI-shallow theories that are Borel complete?

Chris Laskowski

University of Maryland

Image: A math a math

Question: Are there ω -stable, ENI-shallow theories that are Borel complete?

OPEN, but

Chris Laskowski

University of Maryland

Question: Are there ω -stable, ENI-shallow theories that are Borel complete?

OPEN, but

Example (Koerwien)

There is an ω -stable, ENI-depth 2 theory for which $\{SH(M) : M \in Mod_{\aleph_0}(T)\}$ is unbounded in ω_1 .

Chris Laskowski

University of Maryland

Image: A math a math

Koerwien's example is a 'pun on ω '.

All of the complexity arises from the complicated structure of the automorphisms of $acl(\emptyset)$!

Chris Laskowski

University of Maryland

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Borel reduciblity

Recall: Fix countable vocabularies τ_1, τ_2 .

For i = 1, 2

- $\mathscr{S}_i = \{ all \ \tau_i \text{-structures with universe } \omega \}$ with the usual topology.
- X_i be a Borel subset of \mathscr{S}_i , closed under \cong .
- E_i be an equivalence relation on X_i extending \cong .

 $(X_1, E_1) \leq_B (X_2, E_2)$ iff there is a Borel $f : X_1 \to X_2$ (relative to topologies on $\mathscr{S}_1, \mathscr{S}_2$) such that for all $\mathfrak{A}, \mathfrak{B} \in X_1$

$$\mathfrak{A}E_1\mathfrak{B} \Longleftrightarrow f(\mathfrak{A})E_2f(\mathfrak{B})$$

Chris Laskowski

A B A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

$$\mathscr{S}_2$$
-Basic Open Sets: $\mathscr{U}_{R,\overline{n}} = \{M_2 \in \mathscr{S}_2 : M_2 \models R(\overline{n})\}$
for every $R \in \tau_2$ and $\overline{n} = (n_1 \dots, n_k) \in \omega^{\operatorname{arity}(R)}$.

 $f: \mathscr{S}_1 \to \mathscr{S}_2$ Borel means $f^{-1}(Basic open set in \mathscr{S}_2)$ is a Borel subset of \mathscr{S}_1 .

University of Maryland

< □ > < □ > < □

 ω -stable theories: Do uncountable languages matter?

Chris Laskowski

 \mathscr{S}_2 -Basic Open Sets: $\mathscr{U}_{R,\overline{n}} = \{M_2 \in \mathscr{S}_2 : M_2 \models R(\overline{n})\}$ for every $R \in \tau_2$ and $\overline{n} = (n_1 \dots, n_k) \in \omega^{\operatorname{arity}(R)}$.

 $f: \mathscr{S}_1 \to \mathscr{S}_2$ Borel means $f^{-1}(Basic open set in \mathscr{S}_2)$ is a Borel subset of \mathscr{S}_1 .

So: For every R, \overline{n} there is a quantifier-free $\Phi_{R,\overline{n}} \in L_{\omega_1.\omega}$ in the vocabulary $\tau_1(\omega)$ such that

$$M_1 \models \Phi_{R,\overline{n}} \iff f(M_1) \models R(\overline{n})$$

Chris Laskowski

University of Maryland

λ -Borel reducibility

Generalize to $\lambda \geq \aleph_0$:

$$\begin{aligned} \mathscr{S}_1^{\lambda} &= \{\tau_1 \text{-structures with universe } \lambda\} \\ \mathscr{S}_2^{\lambda} &= \{\tau_2 \text{-structures with universe } \lambda\}. \end{aligned}$$

 $f: \mathscr{S}_1^{\lambda} \to \mathscr{S}_2^{\lambda}$ is λ -Borel if for every $R \in \tau_2$ and $\overline{\alpha} = (\alpha_1, \ldots, \alpha_k) \in \lambda^k$ there is a q.f. $L_{\lambda^+, \omega}$ -sentence $\Phi_{R, \overline{\alpha}}$ such that

$$M_1 \models \Phi_{R,\overline{\alpha}} \Longleftrightarrow f(M_1) \models R(\overline{\alpha})$$

Chris Laskowski

University of Maryland

Image: A math a math

Definition

If, for $i = 1, 2 X_i$ is a λ -Borel subset of \mathscr{S}_i and E_i an equivalence relation on X_i extending $\equiv_{\lambda^+,\omega}$, then (X_1, E_1) is λ -Borel reducible to (X_2, E_2) if there is a λ -Borel $f : X_1 \to X_2$ such that $\mathfrak{A}E_1\mathfrak{B} \Leftrightarrow f(\mathfrak{A})E_2f(\mathfrak{B})$.

Chris Laskowski

Image: A math a math

Definition

If, for i = 1, 2 X_i is a λ -Borel subset of \mathscr{S}_i and E_i an equivalence relation on X_i extending $\equiv_{\lambda^+,\omega}$, then (X_1, E_1) is λ -Borel reducible to (X_2, E_2) if there is a λ -Borel $f : X_1 \to X_2$ such that $\mathfrak{A}E_1\mathfrak{B} \Leftrightarrow f(\mathfrak{A})E_2f(\mathfrak{B})$.

As before (Graphs on $\lambda, \equiv_{\lambda^+, \omega}$) is maximal w.r.t. λ -Borel reducibility.

Chris Laskowski

University of Maryland

Definition

If, for i = 1, 2 X_i is a λ -Borel subset of \mathscr{S}_i and E_i an equivalence relation on X_i extending $\equiv_{\lambda^+,\omega}$, then (X_1, E_1) is λ -Borel reducible to (X_2, E_2) if there is a λ -Borel $f : X_1 \to X_2$ such that $\mathfrak{A}E_1\mathfrak{B} \Leftrightarrow f(\mathfrak{A})E_2f(\mathfrak{B})$.

As before (Graphs on $\lambda, \equiv_{\lambda^+, \omega}$) is maximal w.r.t. λ -Borel reducibility.

A surprise: (subtrees of ${}^{<\omega}\lambda, \equiv_{\lambda^+,\omega}$) is λ -Borel complete.

Chris Laskowski

University of Maryland

Image: A math a math

TFAE for ω -stable theories T:

- T is ENI-NDOP, ENI-shallow
- For some λ ≥ ℵ₀ (Mod_λ(T), ≡_{λ⁺,ω}) is not λ-Borel complete
- For some λ ≥ ℵ₀ {SH_{λ+,ω}(M) : M ∈ Mod_λ(T)} is bounded below λ⁺

Image: A match a ma

 ω -stable theories: Do uncountable languages matter?

Chris Laskowski

TFAE for ω -stable theories T:

- T is ENI-NDOP, ENI-shallow
- For some $\lambda \geq \aleph_0 \; (Mod_\lambda(T), \equiv_{\lambda^+, \omega})$ is not λ -Borel complete
- For some λ ≥ ℵ₀ {SH_{λ+,ω}(M) : M ∈ Mod_λ(T)} is bounded below λ⁺
- For some κ_0 , $I_{\infty,\omega}(T,\kappa) < 2^{\kappa}$ for all $\kappa \geq \kappa_0$.

TFAE for ω -stable theories T:

- T is ENI-NDOP, ENI-shallow
- For some $\lambda \geq \aleph_0 \ (Mod_{\lambda}(T), \equiv_{\lambda^+, \omega})$ is not λ -Borel complete
- For some λ ≥ ℵ₀ {SH_{λ+,ω}(M) : M ∈ Mod_λ(T)} is bounded below λ⁺
- For some κ_0 , $I_{\infty,\omega}(T,\kappa) < 2^{\kappa}$ for all $\kappa \geq \kappa_0$.

There are ω -stable, ENI-NDOP, ENI-deep theories T with DOP !

Image: A match a ma

TFAE for ω -stable theories T:

- T is ENI-NDOP, ENI-shallow
- For some $\lambda \geq \aleph_0 \; (\mathit{Mod}_\lambda(T), \equiv_{\lambda^+, \omega})$ is not λ -Borel complete
- For some λ ≥ ℵ₀ {SH_{λ+,ω}(M) : M ∈ Mod_λ(T)} is bounded below λ⁺
- For some κ_0 , $I_{\infty,\omega}(T,\kappa) < 2^{\kappa}$ for all $\kappa \geq \kappa_0$.

There are ω -stable, ENI-NDOP, ENI-deep theories T with DOP ! Such theories T have 2^{κ} nonisomorphic models, but fewer than 2^{κ} $L_{\infty,\omega}$ -inequivalent models for most uncountable cardinals κ .

TFAE for ω -stable theories T:

- T is ENI-NDOP, ENI-shallow
- For some $\lambda \geq leph_0$ $(Mod_\lambda(T), \equiv_{\lambda^+, \omega})$ is not λ -Borel complete
- For some λ ≥ ℵ₀ {SH_{λ+,ω}(M) : M ∈ Mod_λ(T)} is bounded below λ⁺
- For some κ_0 , $I_{\infty,\omega}(T,\kappa) < 2^{\kappa}$ for all $\kappa \geq \kappa_0$.

There are ω -stable, ENI-NDOP, ENI-deep theories T with DOP ! Such theories T have 2^{κ} nonisomorphic models, but fewer than 2^{κ} $L_{\infty,\omega}$ -inequivalent models for most uncountable cardinals κ .

This partially explains why it is hard to prove "many-models" for theories with DOP.

The real John Baldwin.

・ロト・日本・モト・モー シックの

Chris Laskowski

University of Maryland

The real John Baldwin.

Thank you John for all you have taught me. I am forever grateful.

Chris Laskowski

University of Maryland

Image: A math a math