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In [7], prior to his work classifying the uncountable models of certain
theories, the second author proved a structure theorem for the class of a-
models (i.e., Fa

κr(T )-saturated models in the notation of [7]) of a superstable
theory with NDOP. Specifically, in Chapter X of [7] he proved that an a-
model of such a theory is a-prime and a-minimal over a normal tree of
models, where each node is a-prime over its predecessor and the realization
of a regular type. Thus, among superstable theories, the notion of NDOP
provides a dichotomy: Either the number of nonisomorphic a-models in
each cardinality ≥ 2|T | is maximal, or every a-model is determined up to
isomorphism by a tree of invariants. It is natural to ask whether a similar
dichotomy can be found for the larger class of stable theories. The main
obstruction is that an arbitrary stable theory need not have many regular
types. Because of this we relax the regularity requirement in Definition 1.7.
Our main result, Theorem 1.8, characterizes the stable theories for which
large saturated models admit decompositions in this weaker sense.

The first section of the paper states our findings. Section 2 gives some
preparatory lemmas that hold for arbitrary stable theories. In Section 3
we work over a single independent tree and characterize when the a-prime
model is a-minimal. In Section 4 we prove Theorem 1.8. Finally, in Section 5
we investigate the effect of restricting to a countable language. By using
methods of descriptive set theory we derive unexpected (to us) consequences
of NDOP (Theorem 1.11 and Corollary 1.12).

We assume some familiarity with the notions and notational conven-
tions of stability theory, specifically the forking calculus and orthogonality.
Knowledge of the material in any of the basic articles or texts in stability
(e.g., [1], [5], or [6]) should be sufficient. Also, since many of the arguments
that appear here are variants of what occur in the superstable, NDOP situa-
tion, it might be helpful for the reader to skim Chapter X of [7]. We assume
that we are working in a large, saturated structure C and that our language
admits elimination of quantifiers, so the notions of submodel and elemen-
tary submodel are interchangeable. To ease notation we do not distinguish
between elements of C and finite tuples. We write S(A) to denote the union
of the Stone spaces Sn(A) of complete types over A in n free variables. For
brevity we sometimes write AB in place of A ∪B.
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1 Statement of results

Hyp: Throughout this paper all theories T are stable

and κ always denotes the cardinal κr(T ).

We work in the category of a-models of T . That is, M is an a-model if
and only if every type that is almost over a subset of M of size less than κ is
realized in M . An a-model M is a-prime over a set X if M embeds over X
into any a-model N that contains X. We rely heavily on Theorems IV 3.12
and 4.14 of [7], which assert that a-prime models exist over any set X, and
are unique up to isomorphism over X. An a-model M is a-minimal over X
if there is no proper a-submodel of M containing X.

We first describe two species of trees of a-models and characterize when
the a-prime model over the union of such a tree is in fact a-minimal over
the union.

Definition 1.1 A tree I is a nonempty, downward closed subset of <ωδ for
some ordinal δ. As notation, for η, ν ∈ I, we write η E ν if η is an initial
segment of ν. For η 6= 〈〉, η− denotes the (unique) immediate predecessor
of η.

Definition 1.2 An independent tree of sets is a set {Xη : η ∈ I} indexed
by a tree I such that Xη ⊆ Xν whenever η E ν and Xη ⌣

X
η−

⋃
{Xν : η 5 ν}

for all η 6= 〈〉. As notation, XJ =
⋃
{Xη : η ∈ J} for any subtree J ⊆ I.

An independent tree is normal if, in addition, tp(Xν/Xη) ⊥ Xη− for all
η, ν ∈ I satisfying η 6= 〈〉 and η = ν−.

Theorem 1.3 Let {Mη : η ∈ I} be any independent tree of a-models and
let M∗

I be a-prime over MI . Then the following properties are equivalent:

1. M∗
I is a-minimal over MI ;

2. M∗
I does not contain any infinite indiscernible sequences over MI ;

3. For all nonalgebraic p ∈ S(M∗
I ), p 6⊥Mη for some η ∈ I;

4. For all types p, if p 6⊥M∗
I then p 6⊥Mη for some η ∈ I.

Two corollaries follow easily from this theorem.
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Corollary 1.4 Let {Mη : η ∈ I} be any independent tree of a-models and let
M∗

I be a-prime over MI . If M∗
I is a-minimal over MI then M∗

J is a-minimal
over MJ for any subtree J ⊆ I.

Corollary 1.5 Fix a cardinal λ ≥ κ. Let {Mη : η ∈ I} be any independent
tree of λ-saturated models and let M∗

I be a-prime over MI . If M∗
I is a-

minimal over MI then M∗
I is λ-saturated.

Next we describe classes of theories T for which a-prime models over
certain species of trees are always a-minimal. The strongest such property
is the minimality property for independent trees, which asserts that for a
given theory T , the a-prime model over any independent tree of a-models
of T is a-minimal. We say that T has the minimality property for normal
trees if this holds for all normal trees. We will see below that these notions
coincide.

The following definitions are weakenings of these global notions. They
only require that a-prime models be a-minimal for independent trees indexed
by some very simple index sets.

Definition 1.6 For α any ordinal, let Iα be the tree of height two with
a unique root and whose successors are indexed by α. In particular, I2
denotes the 3-element tree with two incomparable elements. Let J denote
the linearly ordered tree of length ω.

A theory T has NDOP if a-prime models over any independent tree
of a-models indexed by I2 are necessarily a-minimal. For µ any infinite
cardinal, T has µ-NDOP if for all α < µ, every a-prime model over every
independent tree of a-models indexed by Iα is a-minimal. T has NDIDIP
if a-prime models over independent trees of a-models indexed by J are a-
minimal. T has normal NDIDIP if a-prime models over a normal tree of
a-models indexed by J are a-minimal.

The reader who is disgusted with the phrase ‘normal NDIDIP’ can relax
– For stable theories with κ-NDOP, it is equivalent to NDIDIP.

An easy inductive argument shows that if T has NDOP, then T has
ω-NDOP. Additionally, since every type over an a-model is based and sta-
tionary over a set of size < κ, it follows from Theorem 1.3 that if T has
κ-NDOP then T has µ-NDOP for all cardinals µ. In particular, when T is
superstable the notions of NDOP and µ-NDOP coincide. However, when T
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is strictly stable there may be a gap between NDOP and κ-NDOP. It was a
surprise to us to discover (see Theorem 1.11) that in fact the gap does not
exist when T is countable.

The following notions are central to our attempts at finding invariants
for a-models of stable theories.

Definition 1.7 A partial decomposition of an a-model M is a normal tree
of a-submodels {Mη : η ∈ J} of M , where M〈〉 is a-prime over ∅ and for
every η 6= 〈〉, Mη is a-prime over Mη− ∪ {aη} for some finite tuple aη. A
decomposition of M is a partial decomposition of M such that M is a-prime
and a-minimal over MJ . A partial decomposition is small if |M∗

J | < |M |.
We say that the partial decomposition {Nη : η ∈ I} extends {Mη : η ∈ J}
simply if J is a subtree of I and Nη = Mη for all η ∈ J .

Theorem 1.8 The following are equivalent for a stable theory T :

1. T has the minimality property for independent trees;

2. Every small partial decomposition of every saturated N of size > 2|T |

extends to a decomposition of N ;

3. T has κ-NDOP and NDIDIP;

4. T has κ-NDOP and normal NDIDIP;

5. T has the minimality property for normal trees.

Recall that a tree I is well-founded if it does not have an infinite branch.

Proposition 1.9 Suppose that T has κ-NDOP and {Mη : η ∈ I} is an
independent tree of a-models where the index tree I is well-founded. Then
every a-prime model over MI is a-minimal over MI .

A (stable) theory T is shallow if there is no increasing sequence 〈Mn :
n ∈ ω〉 of a-models of T such that Mn+1 is a-prime over Mn ∪{an} for some
tuple an for every n and tp(Mn+1/Mn) ⊥ Mn−1 for all n > 0. Clearly, if T
is shallow and {Mη : η ∈ I} is a decomposition of an a-model M , then the
indexing tree I is well-founded.

Corollary 1.10 If T has κ-NDOP and is shallow, then T has the mini-
mality property for independent trees. In particular, such a theory satisfies
NDIDIP.
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Until this point, the cardinality of the language of T was not relevant. By
contrast, the countability of T plays a crucial role in the following theorem,
as it allows us to employ methods of descriptive set theory (specifically that
every analytic subset of a Borel set has the property of Baire).

Theorem 1.11 If T is countable, then NDOP implies ω1-NDOP (hence
µ-NDOP for all cardinals µ).

Our final Corollary follows immediately from the two preceding results.

Corollary 1.12 T countable, NDOP, shallow implies NDIDIP.

2 Lemmas about saturation, nonforking and

orthogonality

In this section we prove some assorted lemmas about stable theories that
will be used in the following sections. The first is an easy characterization
of λ-saturation of models when λ ≥ κ.

Lemma 2.1 Suppose that λ ≥ κ and M is an a-model such that for every
subset A ⊆ M with |A| < λ and every nonalgebraic p ∈ S(A), there is a
forking extension q ∈ S(M). Then M is λ-saturated.

Proof. The definition of an a-model implies that M is κ-saturated, so
assume that λ > κ. Choose any A ⊆ M with |A| < λ and choose any
nonalgebraic p ∈ S(A). Clearly, if there is any set B with A ⊆ B ⊆M and
any type p′ ∈ S(B) extending p that is algebraic, then p is realized in M .
But, if we assume by way of contradiction that this is not the case, there
would be no difficulty in constructing (by induction on α) a continuous,
increasing sequence 〈Aα : α < κ〉 of subsets of M , together with a sequence
〈pα : α < κ〉 of types such that A0 = A, p0 = p, each pα ∈ S(Aα), |Aα| ≤
|A| + κ, and pβ is a forking extension of pα for all α < β < κ. As stability
contradicts the existence of such a sequence, the lemma is proved.

Definition 2.2 Let {Xη : η ∈ I} be an independent tree of sets. A set B
is self-based on {Xη : η ∈ I} if tp(B/XH) does not fork over B ∩XH for all
subtrees H ⊆ I.
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The following Lemma is straightforward.

Lemma 2.3 If X and A are any sets and |A| < κ, then there is a set
B ⊇ A such that |B| < κ, B \ A ⊆ X, and tp(B/X) does not fork over
B ∩X. Furthermore, if B′ ⊇ B and B′ \ B ⊆ X, then tp(B′/X) does not
fork over B′ ∩X.

Proof. Given A and X, let C ⊆ X be such that |C| < κ and tp(A/X)
is based on C. Let B = A ∪ C.

The next Lemma is more substantial.

Lemma 2.4 For every finite index tree I, for every independent tree {Xη :
η ∈ I} of models, and for every set A of size < κ, there is a set B ⊇ A such
that |B| < κ, B \ A ⊆ XI , and B is self-based on {Xη : η ∈ I}.

Proof. We argue by induction on |I|. If |I| = 1, this is immediate
by Lemma 2.3. So assume that |I| ≥ 2, I = J ∪ {η∗}, where η∗ is a leaf
of I. Let {Xη : η ∈ I} be any independent tree of sets. We assume that
the conclusion of the Lemma holds for {Xη : η ∈ J}. Fix any set A with
|A| < κ. By Lemma 2.3 choose B0 ⊇ A such that |B0| < κ, B0\A ⊆ XI , and
tp(B0/XI) does not fork over B0 ∩XI . Now apply the inductive hypothesis
to B0 to get B ⊇ B0 such that |B| < κ, B \ B0 ⊆ XJ , (hence B \ A ⊆ XI)
and B is self-based on {Xη : η ∈ J}. Finally, by employing Lemma 2.3
lg(η∗) times, beginning at η∗ and working downward to 〈〉, choose a set C
such that B ∩ Xη∗ ⊆ C ⊆ Xη∗ , |C| < κ, and tp(C/Xν) does not fork over
C ∩Xν for all ν E η∗.

We argue that the set BC is self-based on {Xη : η ∈ I}. To see this
we set some notation. Let µ = (η∗)−. For H ⊆ J a subtree, let H ′ be the
smallest subtree of J containing H and µ, and let H∗ = H ∪ {η∗}. Note
that for any subtree H ⊆ J , X(H′)∗ = XH∗ and XH∗ = XHXη∗ = XH′Xη∗ .
Furthermore, since B ∩Xη∗ ⊆ C, (B ∩XH)∪C = (B ∩XH′)∪C. We begin
with the following claim.

Claim. For all subtrees H ⊆ J , B ⌣
(B∩XH)C

XH∗ .

Proof. Fix a subtree H ⊆ J . From our observations above we can
replace H by H ′ without changing XH∗ or (B ∩ XH)C. Thus, we may
assume that µ ∈ H. Since XI = XJXη∗ and since tp(B/XI) does not fork
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over B ∩XI , we have B ⌣
(B∩XJ )(B∩Xη∗)

XJXη∗ . Let D = (B ∩XJ) \ XH , so

B ∩XJ = D ∪ (B ∩XH). Thus

Xη∗ ⌣
XHD(B∩Xη∗)

B(1)

Since the tree {Xη : η ∈ I} is independent, tp(XJ/Xη∗) does not fork over
Xµ. Since µ ∈ H Xµ ⊆ XH , so XHD⌣

Xµ

Xη∗ , so tp(D/XHXη∗) does not fork

over XH . Combining this with (1) transitivity of nonforking yields

Xη∗ ⌣
XH(B∩Xη∗)

B(2)

Since B is self-based on {Xη : η ∈ J}, tp(B/XH) does not fork over B∩XH ,
so B ⌣

(B∩XH)(B∩Xη∗)
XH . Transitivity and (2) imply B ⌣

(B∩XH)(B∩Xη∗)
XHXη∗ ,

so the Claim follows since B ∩Xη∗ ⊆ C ⊆ Xη∗ .

Now fix an arbitrary subtree H ⊆ J . We will show that tp(BC/XH∗)
does not fork over (BC)∩XH∗ and tp(BC/XH) does not fork over (BC)∩
XH . The former statement follows immediately from the Claim since (BC)∩
XH∗ = (B ∩ XH)C. For the latter statement, choose the shortest ν E η∗

such that tp(XH/Xη∗) does not fork over Xν . Since tp(C/Xν) does not fork
over C∩Xν and since C ⊆ Xη∗ , tp(C/XH) does not fork over C∩Xν , hence

XH ⌣
(B∩XH)(C∩Xν)

C

So the Claim and the transitivity of nonforking gives XH ⌣
(B∩XH)(C∩Xν)

BC,

which suffices since (BC) ∩XH = (B ∩XH) ∪ (C ∩Xν).

Proposition 2.5 Suppose that {Xη : η ∈ I} is an independent tree of sets
with |I| < κ and suppose that |A| < κ. Then there is a set B ⊇ A such that
|B| < κ, B \ A ⊆ XI , and B is self-based on {Xη : η ∈ I}.

Proof. When κ = ℵ0 this is precisely Lemma 2.4, so assume κ > ℵ0.
We begin by inductively constructing an increasing sequence 〈Bn : n ∈ ω〉
of sets, each of size < κ such that B0 = A, Bn \ A ⊆ XI , and tp(Bn/XJ)
does not fork over Bn+1 ∩XJ for all finite subtrees J ⊆ I. This is possible
by repeated use of Lemma 2.4, since there are fewer than κ finite subtrees
of I.
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Let B∗ =
⋃
{Bn : n ∈ ω}. Since κ is regular and uncountable |B∗| < κ.

We argue that B∗ is self-based on {Xη : η ∈ I}. Choose an arbitrary subtree
H ⊆ I and a finite tuple b from B∗. To show that tp(b/XH) does not fork
over B∗ ∩ XH , choose a finite tuple c from XH and a formula ϕ(x, y) over
B∗ ∩ XH such that ϕ(b, c) holds. In order to show that ϕ(x, c) does not
fork over B∗ ∩XH we show that ϕ(x, c) does not k-divide over B∗ ∩XH for
any k ∈ ω. If, by way of contradiction, ϕ(x, c) did k-divide over B∗ ∩XH ,
then choose n ∈ ω and a finite subtree J ⊆ H such that b ∈ Bn, c ∈ XJ ,
and ϕ(x, y) is over Bn+1 ∩ XH . If 〈cn : n ∈ ω〉 were a witness to ϕ(x, c)
k-dividing over B∗ ∩ XH (i.e., tp(cn/B

∗ ∩ XH) = tp(c/B∗ ∩ XH) for all
n ∈ ω and {ϕ(x, cn) : n ∈ ω} is k-inconsistent) then the same sequence
would witness ϕ(x, c) k-dividing (hence forking) over Bn+1 ∩XJ . But this
would imply tp(Bn/XJ) forks over Bn+1 ∩ XJ , which is contrary to our
construction of Bn+1.

Our third group of results uses the ideas in [8] (which in turn were
motivated by ideas in [2]) to prove a technical fact (Proposition 2.11) for
arbitrary stable theories. Note that there is a much shorter proof of this
when T is superstable, which is due to the ubiquity of regular types over
a-models.

Definition 2.6 Let P ⊆ S(M) be a set of types over a model M . A set B
is weakly dominated by P over M if there is an independent set I over M
consisting of realizations of P such that B is dominated by I over M . (It is
possible that I contains many realizations of the same type in P.)

Definition 2.7 Let M be any a-model. A complete type p is an a-type
above M if the domain of p is an a-model containing M . A class P of a-
types above M is M-determined if for every p ∈ P, either p does not fork
over M or p ⊥ M . A class P of a-types above M is dense above M if, for
all a-models N ⊇ M , every nonalgebraic type over N is nonorthogonal to
some element of P ∩ S(N).

Definition 2.8 Let P be a class of a-types above M . A P-sequence over
M is a sequence 〈Mi, aj : i ≤ α, j < α〉, where 〈Mi : i ≤ α〉 is an increasing
sequence of a-models, M0 = M , for all i < α tp(ai/Mi) ∈ P and Mi+1 is
a-prime over Mi∪{ai}, and Mi is a-prime over

⋃
j<iMj for all limit ordinals

i ≤ α.
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Lemma 2.9 If P is an M-determined class of a-types above M and 〈Mi, aj :
i ≤ α, j < α〉 is a P-sequence over M , then Mα is weakly dominated over
M by {tp(aj/Mj)|M : j < α, tp(aj/Mj) does not fork over M}.

Proof. Fix an M -determined class P of a-types above M . We will
prove (by simultaneous induction on α) that if 〈Mi, aj : i ≤ α, j < α〉 is
a P-sequence over M , I = {aj : tp(aj/Mj) does not fork over M} and
J = {aj : tp(aj/Mj) ⊥M}, then

1. I is independent over M and

2. Mα is dominated by I over M .

The conclusions are vacuous when α = 0 and are trivially verified when α is
a limit ordinal. So assume that the two conditions hold for the P-sequence
〈Mi, aj : i ≤ α, j < α〉. Choose any a∗ such that tp(a∗/Mα) ∈ P and let M∗

be a-prime over Mαa
∗. We argue that the two conditions also hold for the

concatenation of the original P-sequence with 〈M∗, a∗〉. Let p = tp(a∗/Mα).
We first check that (1) continues to hold: If p ⊥M , then there is nothing

to check. On the other hand, if p does not fork over M , then tp(a∗/MI)
does not fork over M , hence I ∪ {a∗} is independent over M .

We now check that (2) continues to hold in both cases. First, assume
that p ⊥M . Then if any set X does not fork with I over M , then it follows
from our inductive assumption that X does not fork with Mα over M . Since
p ⊥M , tp(a∗/MαX) does not fork over Mα. Since M∗ is a-prime over Mαa

∗,
this implies that X does not fork with M∗ over Mα. Hence X does not fork
with M∗ over M by transitivity. On the other hand, suppose that p does
not fork over M . In this case, assume that X does not fork with Ia∗ over
M . Then, since I ∪ {a∗} is independent over M , a∗X does not fork with I
over M . By our inductive hypothesis this implies that a∗X does not fork
with Mα over M . In particular, X does not fork with Mαa

∗ over M . So, X
does not fork with M∗ over M , since a∗ dominates M∗ over Mα.

Lemma 2.10 Suppose that a class P of a-types above M is dense above M .
Then for every b ∈ C, there is a P-sequence over M of length α < κ such
that b ∈Mα.

Proof. Construct a P-sequence over M 〈Mi, aj : i ≤ α, j < α〉 of
maximal length such that tp(aj/Mjb) forks over Mj for every j < α. For
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any such sequence tp(b/Mj+1) forks over Mj for all j < α, hence α < κ.
But, since P is dense above M , the only way the process can terminate is if
tp(b/Mα) is algebraic, so b ∈Mα.

Proposition 2.11 Suppose that {Xj : j ∈ λ} is any collection of subsets of
an a-model N . If a type p is not orthogonal to N but p ⊥ Xj for all j < λ,
then there is a type q ∈ S(N) such that q 6⊥ p, but q ⊥ Xj for all j.

Proof. Choose an a-model N0 ⊇ N with dom(p) ⊆ N0 and let p0 be
the nonforking extension of p to N0. Choose A0 ⊆ N0 of size < κ such that
p0 is definable over A0. Choose C ⊆ N of size < κ such that tp(A0/N) is
definable over C. Choose a set {Ni : i < κ} of a-models to be independent
over N with tp(Ni/N) = tp(N0/N) for all i < κ. For each 0 < i < κ choose
an automorphism σi of C fixing N pointwise and sending N0 onto Ni. As
notation let Ai = σi(A0) and pi = σi(p0). Since p0 6⊥ N it follows that
pi 6⊥ pj for all i < j < κ (see e.g., 1.4.3.3 of [6]). Let N∗ be an a-model
containing

⋃
{Ni : i < κ} and let

P0 = {r : r an a-type above N and {i < κ : r 6⊥ pi} has size < κ}.

Claim. Some nonalgebraic q ∈ S(N) is orthogonal to every r ∈ P0.

Proof. We first argue that P0 is not dense above N∗. Suppose it
were. Let p+

0 denote the nonforking extension of p0 to N∗ and let b be any
realization of p+

0 . By Lemma 2.10 there would be a P0-sequence 〈Mi, aj :
i ≤ α, j < α〉 over N∗ of length α < κ such that b ∈Mα. For each j < α let
rj = tp(aj/Mj). Since α < κ and each rj ∈ P0 we could find m < κ such
that every rj ⊥ pm for every j < α. But now, if e is any realization of p+

m

(the nonforking extension of pm to N∗) then we argue by induction on i ≤ α
that tp(e/Mi) does not fork over N∗. In particular, tp(e/Mα) does not fork
over N∗, hence p+

m and p+
0 would be almost orthogonal over N∗. But this

would contradict p0 6⊥ pm since N∗ is an a-model.
So P0 is not dense aboveN∗. Fix an a-modelN ′ ⊇ N∗ and a nonalgebraic

type q′ ∈ S(N ′) such that q′ is orthogonal to every r ∈ P0 ∩ S(N ′). Choose
D′ of size < κ satisfying C ⊆ D′ ⊆ N ′ over which q′ is definable and choose
D ⊆ N such that there is an automorphism f of C fixing C pointwise with
D = f(D′). Let q be the nonforking extension of f(q′|D′) to S(N).

To see that q satisfies the Claim, choose any r ∈ P0. Say r ∈ S(N ′′).
Choose any E ⊆ N ′′ of size < κ on which r is defined, and choose an
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automorphism τ of C such that τ |D = f−1|D (so τ fixes C pointwise and
τ(q) is parallel to q′) and τ(E) ⊆ N ′. Let r′ ∈ S(N ′) be parallel to τ(r).
Since E∪τ(E) is independent from Ai over C for almost all i < κ (i.e., fewer
than κ exceptions) and since r ∈ P0, it follows that {i < κ : τ(r) 6⊥ pi} has
size < κ, so r′ ∈ S(N ′) ∩ P0. If, by way of contradiction, q 6⊥ r, then
since nonorthogonality is parallelism invariant, it would follow that q′ 6⊥ r′,
contradicting our choice of q′. Thus q ⊥ r for all r ∈ P0.

We argue that any such q ∈ S(N) satisfies the conclusions of the Propo-
sition. Fix such a q and choose any j < λ. Let r ∈ S(N) be the nonforking
extension of any strong type over Xj. Since p ⊥ Xj and since {pi : i ∈ κ}
are conjugate over N , r ⊥ pi for all i, hence r ∈ P0. Thus q ⊥ r. That is,
q ⊥ Xj for all j < λ.

It remains to show that q 6⊥ p. Let q+ and p+
i (i < κ) denote the

nonforking extensions of q and pi (respectively) to N∗. Let P+ = {p+
i : i <

κ}, let

P⊥⊥
0 = {p ∈ S(N∗) : p is orthogonal to every type s that is

orthogonal to every type in P0}

and let

P1 = {s : s is an a-type above N∗ such that either s ⊥ N∗ or s
is a nonforking extension of an element of P+ ∪ P⊥⊥

0 }.

In a moment we will show that P1 is dense above N∗, but we first show
that this suffices. Once it is, then since P1 is N∗-determined, it follows from
Lemmas 2.9 and 2.10 that q+ is weakly dominated over N∗ by P+ ∪ P⊥⊥

0 .
Since q+ is nonalgebraic, q+ (and hence q) is nonorthogonal to at least one
element of P+ ∪ P⊥⊥

0 . Since q is orthogonal every element of P0, q is also
orthogonal to every element of P⊥⊥

0 , so q 6⊥ pi for some i < κ. But, since
the pi’s are all conjugate over N and since q ∈ S(N), it follows that q 6⊥ p0,
so q 6⊥ p.

Thus, it suffices to show that P1 is dense above N∗. Choose any a-
model M ′ ⊇ N∗ and any nonalgebraic r ∈ S(M ′). We argue that r is
nonorthogonal to some element of P1∩S(M ′). We may assume that r 6⊥ N∗

and r ⊥ pi for all i < κ, otherwise r itself would be a witness. We complete
the proof by constructing a conjugate type r∗ ∈ P⊥⊥

0 such that r 6⊥ r∗.
To accomplish this, first note that r ∈ P0, hence r is orthogonal to every
type that is orthogonal to every type in P0. Since r 6⊥ N∗ we can choose a
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type t ∈ S(N∗) such that r 6⊥ t. Next, choose sets D ⊆ M ′ and E ⊆ N∗

such that |D| < κ, E = D ∩ N∗, C ⊆ E, t is definable over E, and r is
definable over D. Finally, choose D′ ⊆ N∗ such that D and D′ satisfy the
same strong type over E and are independent over E and let r∗ ∈ S(N∗) be
definable over D′ in the same manner that r is over D. Since r 6⊥ E, r 6⊥ r∗.
Also, since D and D′ realize the same type over C, r∗ is also orthogonal to
every type that is orthogonal to every element of P0. Thus, r∗ ∈ P⊥⊥

0 , so
s, the nonforking extension of r∗ to S(M ′) is nonorthogonal to r and is in
P1 ∩ S(M ′).

Our final group of results is aimed at proving Proposition 2.16, which
is a variant on the more familiar fact that if {Bi : i ∈ κ} are independent
over a set A and a stationary type p is nonorthogonal to every Bi, then
p 6⊥ A. The buildup to the proof of this proposition develops the notion
of nonforking in an ultrapower of the monster model. For the rest of this
section

Fix a nonprincipal ultrafilter D on ω and let C
∗ =

∏
C/D.

We abuse notation slightly and consider C
∗ to be an elementary extension

of C. Specifically, we identify elements a ∈ C with the diagonal element
〈a : i ∈ ω〉/D ∈ C

∗. For a subset X ⊆ C we let X∗ denote
∏
X/D. By our

notational convention X ⊆ X∗ ⊆ C
∗.

Lemma 2.12 For any a ∈ C and B ⊆ C, tp(a/B∗) does not fork over B.

Proof. Choose any model M such that B ⊆M ⊆ C and tp(a/M) does
not fork over B. It clearly suffices to show that tp(a/M∗) does not fork over
M . So suppose that θ(a, b∗) holds (in C

∗, where a is identified with its
diagonal element) for some formula θ(x, y) with no hidden parameters. By
finite satisfiability, it suffices to find some b ∈ M such that θ(a, b) holds.
Choose a representation b∗ = 〈bi : i ∈ ω〉/D with each bi ∈M . Since θ(a, b∗)
holds, {i ∈ ω : θ(a, bi)} ∈ D, so is nonempty.

Lemma 2.13 Suppose that A ⊆ Bi ⊆ C for all i ∈ ω, and that {Bi : i ∈ ω}
is independent over A. Then C⌣

A
B, where B =

∏
i∈ω Bi/D.

Proof. Choose any d ∈ C and model M satisfying A ⊆ M ⊆ C and
M⌣

A

⋃
{Bi : i ∈ ω}d. Then {Bi : i ∈ ω} is independent over M and by

13



transitivity it suffices to prove that tp(d/MB) does not fork over M . Let
θ(x, y) be an L(M)-formula such that θ(d, b∗) holds for some b∗ ∈ B. By
finite satisfiability it suffices to find some m ∈M such that θ(d,m) holds.

Let E = M ∪ {Bi : i ∈ ω}. Since tpθ(d/E) is definable, there is an
L-formula ψ(y, z) and an e ∈ E such that

θ(d, c) ↔ ψ(c, e)(3)

for all c ∈ E. Choose a representation 〈bi : i ∈ ω〉/D for b∗ with bi ∈ Bi

for all i ∈ ω. Since θ(d, b∗) holds, {i ∈ ω : θ(d, bi)} ∈ D. Since D is
nonprincipal, e is finite, and {Bi : i ∈ ω} is independent over M , there is an
i ∈ ω such that both θ(d, bi) holds and e⌣

M
bi. Since bi ∈ E, (3) implies that

ψ(bi, e) holds. Thus, by symmetry and finite satisfiability there is m ∈ M
such that ψ(m, e) holds. By (3) again, θ(d,m) holds and we finish.

Lemma 2.14 Suppose that {ai : i ∈ ω} ⊆ C, N ⊆ C is a model, and for
each i ∈ ω Mi ⊆ N is a model such that tp(ai/N) does not fork over Mi.
Then tp(a∗/N∗) does not fork over M , where a∗ = 〈ai : i ∈ ω〉/D and
M =

∏
i∈ω Mi/D.

Proof. First, note that M is itself a submodel of C
∗. Let θ(x, y) be

any L-formula and let c∗ ∈ N∗ be any element such that θ(a∗, c∗) holds. By
finite satisfiability it suffices to find b∗ ∈ M such that θ(a∗, b∗). Choose a
representation 〈ci : i ∈ ω〉/D for c∗ with each ci ∈ N . Let R = {i ∈ ω :
θ(ai, ci)}. Since θ(a∗, c∗) holds, R ∈ D. We construct a sequence 〈bi : i ∈ ω〉
as follows: For each i ∈ R, choose bi ∈ Mi such that θ(ai, bi). (This is
possible since tp(ai/N) does not fork over Mi.) For any i 6∈ R, let bi be an
arbitrary element of Mi. Let b∗ = 〈bi : i ∈ ω〉/D. Then b∗ ∈M and θ(a∗, b∗)
holds.

We apply these three lemmas in the proof of Proposition 2.16.

Definition 2.15 Let ∆ be a finite set of (partitioned) L-formulas and let B
be any set. A stationary type p is ∆-nonorthogonal to B, written p 6⊥∆ B,
if there is a set D ⊇ dom(p) ∪ B, ϕ(x, yz) ∈ ∆, and elements a realizing
p|D, b ∈ D, and c ∈ C such that tp(c/D) does not fork over B, ϕ(a, bc)
holds, and R∆(p|D ∪ {ϕ(x, bc)}) < R∆(p).

Clearly, p 6⊥ B if and only if p 6⊥∆ B for some finite ∆. Also, if B ⊆ B′

and p 6⊥∆ B then p 6⊥∆ B′.
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Proposition 2.16 Let ∆ be a finite set of formulas and let p be any sta-
tionary type. If {Bi : i ∈ ω} are independent over A and p 6⊥∆ Bi for each
i ∈ ω, then p 6⊥ A.

Proof. To begin we inductively find submodels {Mi : i ∈ ω} of C

such that Bi ⊆ Mi (hence p 6⊥∆ Mi) for each i, yet {Mi : i ∈ ω} are
independent over A. For each i, choose Di containing dom(p) ∪ Mi as
in the definition of ∆-nonorthogonality and let N be a substructure of C

containing
⋃
{Di : i ∈ ω}. By replacing p by its nonforking extension to N ,

we may assume that p ∈ S(N). Let D be any nonprincipal ultrafilter on
ω, let M =

∏
i∈ω Mi/D and let N∗ =

∏
N/D. It follows immediately from

Lemma 2.13 that N ⌣
A
M . So, in light of X 1.1 of [7], in order to conclude

that p 6⊥ A it suffices to show that p 6⊥ M . In fact we will show that p is
∆-nonorthogonal to M by demonstrating that N∗ is a suitable choice of D
in Definition 2.15.

Let a be any realization of p. It follows from Lemma 2.12 that a realizes
the nonforking extension p∗ of p to N∗. Let k = R∆(p) = R∆(p∗). For
each i ∈ ω, since Di ⊆ N we can find ϕi ∈ ∆, bi ∈ N , and ci ∈ C

such that ϕi(a, bici) holds, tp(ci/N) does not fork over Mi and R∆(p ∪
{ϕi(x, bici)}) < k. Since ∆ is finite we may assume that ϕi is identically ϕ
for all i. Let b∗ = 〈bi : i ∈ ω〉/D and c∗ = 〈ci : i ∈ ω〉/D. Then b∗ ∈ N∗

and ϕ(a, b∗c∗) holds. Since p is stationary, its ∆-multiplicity is 1, hence
{yz : R∆(p ∪ {ϕ(x, yz)}) < k} is definable. So the  Loś theorem yields

R∆(p∗ ∪ {ϕ(x, b∗c∗)}) < k = R∆(p∗)

Finally, since tp(ci/N) does not fork over Mi for each i, tp(c∗/N∗) does not
fork over M by Lemma 2.14. So N∗ witnesses p 6⊥∆ M and we finish.

3 Local minimality: Proofs of 1.3–1.5

In this section we work over a specific independent tree and investigate the
consequences of the a-prime model over it being a-minimal. In particular,
we prove Theorem 1.3 and two corollaries that follow from it.

Lemma 3.1 Let {Mη : η ∈ I} be any independent tree of a-models, let J ⊆
I be any subtree, and let ā = 〈aα : α < β〉 be any a-construction sequence
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over MJ . Then ā is an a-construction sequence over MI and tp(ā/MI) does
not fork over MJ . In particular, if M∗

J is a-prime over MJ , then M∗
J is the

universe of an a-construction sequence over MI and tp(M∗
J/MI) does not

fork over MJ .

Proof. Let K be a maximal subtree such that J ⊆ K and stp(ā/MJ) ⊢
stp(ā/MK). It follows that ā is an a-construction sequence over MK . By
way of contradiction assume that K 6= I. Choose ν ∈ K and an immediate
successor η ∈ I \K. Now MK ⌣

Mν

Mη and Mν is an a-model, so, using either

V 3.2 of [7] or I 4.3.4 of [6], an easy induction on β shows that K ∪ {η}
contradicts the maximality of K. The final sentence follows immediately.

Proof of Theorem 1.3. The equivalences (1) ⇔ (2) and (3) ⇔ (4)
have nothing to do with trees. (1) ⇔ (2) is the content of IV 4.21 of [7],
(4) ⇒ (3) is trivial, and (3) ⇒ (4) follows immediately from Proposition 2.11
(take the sets Xi to be the submodels Mη of M). The other two implications
are generalizations of arguments that appear in the proof of X 2.2 of [7].

(2) ⇒ (3) Let r ∈ S(M∗
I ) be nonalgebraic and assume that r ⊥ Mη

for all η ∈ I. Choose A ⊆ M∗
I of size less than κ over which r is based

and stationary. Fix a subtree J ⊆ I of size < κ and an a-prime submodel
M∗

J ⊆M∗
I that contains A. Call a subset B ⊆M∗

J suitable if A ⊆ B, |B| < κ,
and B is self-based on {Mη : η ∈ J}. It follows from Proposition 2.5 that
for every set C ⊆M∗

J of size < κ, there is a suitable B containing C. Thus,
by iterating the Claim below ω times we can construct an infinite Morley
sequence J in r over A inside M∗

I , such that tp(J/AMI) does not fork over
A. In particular, such a J is indiscernible over MI . So, it suffices to prove
the following:

Claim. If B is suitable and c realizes r|B, then tp(c/B) ⊢ tp(c/BMI).

Proof. Fix a suitable B and let c denote any realization of r|B. As
notation, we write Bη for B ∩Mη and write BJ ′ = B ∩MJ ′ for subtrees J ′

of J .
We first argue that tp(c/B) ⊢ tp(c/BM〈〉). Choose any finite tuple

a from M〈〉. Since B is suitable, tp(a/B) does not fork over B〈〉. But
tp(a/B〈〉) is parallel to a type over M〈〉, hence r is orthogonal to tp(a/B).
This implies that a⌣

B
c. Since c was an arbitrary realization of r|B, this

implies tp(c/B) ⊢ tp(c/Ba), hence tp(c/B) ⊢ tp(c/BM〈〉).

16



Now let J ′ be a maximal subtree of J such that tp(c/B) ⊢ tp(c/BMJ ′).
We demonstrate that J ′ = J . From the previous paragraph J ′ is nonempty.
If J ′ 6= J then there is ν ∈ J \ J ′ such that its immediate predecessor,
denoted by η is in J ′. As above, choose a ∈ Mν . Since we know that
tp(c/B) ⊢ tp(c/BMJ ′), it suffices to show that tp(c/BMJ ′) ⊢ tp(c/BMJ ′a).

Subclaim. a ⌣
MηBν

MJ ′B

Proof. Since the original tree is independent Mν ⌣
Mη

MJ ′ . Since aBν ⊆

Mν this implies
a ⌣

MηBν

MJ ′Bν(4)

However, since B is suitable, tp(B/MJ ′Mν) does not fork over BJ ′Bν . Thus,
B ⌣

MJ′Bν

Mν . Since a ∈ Mν , symmetry provides a ⌣
MJ′Bν

B, so the subclaim

follows from (4) and transitivity.

Now let p = tp(a/MJ ′B). The type p does not fork over MηBν ⊆ Mν ,
so p ⊥ r. Thus, tp(c/BMJ ′) ⊢ tp(c/BMJ ′a). Hence J ′ = J .

We have now established that tp(c/B) ⊢ tp(c/BMJ). We argue that in
fact tp(c/B) ⊢ tp(c/BMI). To see this, let I ′ be a maximal subtree that
contains MJ such that tp(c/B) ⊢ tp(c/BMI′). As above, if I ′ 6= I, then
there would be ν ∈ I \I ′ whose immediate predecessor η ∈ I ′. Since the tree
is independent, Mν ⌣

Mη

MI′ . Since B ⊆ M∗
J and J ⊆ I ′, Lemma 3.1 implies

that B is a-constructible hence a-atomic over MI′ . Since Mη is a-saturated,
BMI′ is dominated by MI′ over Mη. Thus, Mν ⌣

Mη

MI′B. Also, for any finite

tuple a from Mν , tp(a/Mη) ⊥ r. Thus, a ⌣
MI′B

c for any such a. It follows

that tp(c/B) ⊢ tp(c/BMI′Mν), contradicting the maximality of I ′. Hence
I ′ = I and our proof is complete.

(4) ⇒ (2) Let J ⊆ M∗
I be a countably infinite, indiscernible sequence

over MI . By stability, J is an indiscernible set over MI . Partition J into
two infinite sets J0 and J1. Then, by taking B =

⋃
J0 when κ ≥ ω1 or to

be a sufficiently large finite subset of J0 when κ = ω, |B| < κ and J1 is an
infinite, independent sequence over B such that J1⌣

B
MI . Let a ∈ J1 and

let p = tp(a/B). Without loss, we may assume that p is stationary.

Claim. p ⊥Mη for all η ∈ I.
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Proof. By way of contradiction, choose η such that p 6⊥ r for some
r ∈ S(Mη). Since p(n) is not almost orthogonal to r(n) over BMI , we can
increase B by finitely many elements of J1 and replace r by r(n) and thereby
assume that

p ⊥/ a

BMI

r

Choose A ⊆Mη of size less than κ such that r is based and stationary over
A. Since M∗

I is a-prime over MI , we can choose C ⊆ MI , also of size less
than κ, such that A ⊆ C and stp(aB/C) ⊢ stp(aB/MI). Note that this
condition implies that

a∗B⌣
C
MI(5)

for any a∗ such that tp(a∗/BC) = tp(a/BC). Since forking is witnessed by
a single formula, there is D, C ⊆ D ⊆ MI such that D \ C is finite and
tp(a/B) ⊥/ a

BD

r. Since Mη is a-saturated and r is based and stationary on

A, there is e ∈ Mη such that tp(e/A) is parallel to r and tp(e/BD) does
not fork over A. So, by the non-almost orthogonality condition, there is a∗

realizing tp(a/B) such that a∗⌣
B
D and a∗ ⌣/

BD
e.

But, since tp(a/MI) does not fork and is stationary over B, this implies
that a and a∗ have the same type over BD, hence over BC. So (5) implies
that tp(a∗B/MI) does not fork over C. Since De ⊆ MI this would imply
that tp(a∗/BDe) does not fork over BD, which is a contradiction.

The proof of Corollary 1.4 is straightforward. Fix an independent tree
{Mη : η ∈ I} of a-models such that the a-prime model M∗

I is a-minimal and
fix a subtree J ⊆ I. To show that M∗

J is a-minimal over MJ it suffices to
show that every nonalgebraic type p ∈ S(M∗

J) is nonorthogonal to some Mη

with η ∈ J . So fix such a type p. Since p has a nonforking extension to
S(M∗

I ) and since M∗
I is a-minimal, p 6⊥ Mη for some η ∈ I. Choose such

an η of least length and assume by way of contradiction that η 6∈ J . Then
lg(η) 6= 0 and there is ν E η of maximal length such that ν ∈ J . Since
the tree is independent, tp(Mη/MJ) does not fork over Mν . Since Mν is
an a-model this implies that tp(Mη/M

∗
J) does not fork over Mν . But then,

since p ⊥Mν , forking symmetry and X 1.1 of [7] imply that p ⊥Mη, which
is a contradiction.

Proof of Corollary 1.5. If λ = κ there is nothing to prove since a-
models are κ-saturated. So fix λ > κ and an independent tree {Mη : η ∈ I}

18



of λ-saturated a-models. Suppose that the a-prime model M∗
I over MI is

a-minimal over MI . Choose A ⊆M with |A| < λ and choose a nonalgebraic
q ∈ S(A). Because of Lemma 2.1 it suffices to show that q has a forking
extension in S(M∗

I ). Choose a subset A0 ⊆ A of size less than κ over which
q is based and let q0 denote the restriction of q to A0. By appending a
countable Morley sequence in q0 to A0, we may additionally assume that
q0 is stationary. Since M∗

I is a-minimal over MI , q0 6⊥ Mη for some η ∈ I.
Choose p ∈ S(Mη) such that p 6⊥ q0 and choose B ⊆ Mη of size less than κ
over which p is based and stationary. Let p0 denote the restriction of p to
B. Since p0 6⊥ q0 there is an n ∈ ω such that p

(n+1)
0 is not almost orthogonal

to q
(n+1)
0 over BA0. Since M∗

I is an a-model there are finite sequences C and

D in M∗
I realizing p

(n)
0 and q

(n)
0 respectively. Thus,

p0 ⊥/ a

A0BCD

q0

Since Mη is λ-saturated there is a Morley sequence 〈ei : i ∈ λ〉 in M∗
I of

(independent) realizations of p0 over B of length λ. Since |ABCD| < λ this
implies that tp(ei/ABCD) does not fork over B for some i. But then q has
a forking extension to S(ABCDei) and we finish.

4 Global minimality: Proofs of 1.8—1.10

We begin with a definition and a series of lemmas.

Definition 4.1 A partial decomposition {Mη : η ∈ J} is λ-full if for every
η ∈ J and every nonalgebraic p ∈ S(Mη) satisfying p ⊥Mη− (when η 6= 〈〉)
there is a set Hη ⊆ J of λ immediate successors of η such that Mν realizes
p for every ν ∈ Hη.

The proof of the following lemma is a routine exercise in bookkeeping.
(Note that if {Mη : η ∈ J} is a partial decomposition of C, then for each η,
|Mη| ≤ 2|T |, so |S(Mη)| ≤ 2|T |.)

Lemma 4.2 If {Mη : η ∈ J} is a partial decomposition of C and λ ≥
2|T | + |J |, then there is a tree I of size λ and a λ-full partial decomposition
{Mη : η ∈ I} of C extending it.
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Lemma 4.3 If |I| = λ > 2|T |, {Mη : η ∈ I} is a λ-full partial decomposition
of C, and M∗

I is a-minimal over MI , then M∗
I is λ-saturated. Moreover, if

λ<κ = λ, then M∗
I is saturated of power λ.

Proof. Fix A ⊆ M∗
I of size < λ and a nonalgebraic, stationary type

p ∈ S(A). We argue that p has a forking extension in S(M∗
I ).

Let µ = |A| + 2|T |. Choose a subtree J ⊆ I, |J | ≤ µ, and an a-prime
submodel M∗

J � M∗
I such that A ⊆ M∗

J . Since M∗
I is a-minimal, M∗

J is a-
minimal by Corollary 1.4. Thus by Theorem 1.3(4) we can choose η ∈ J of
minimal length such that p 6⊥Mη. By Proposition 2.11, there is q ∈ S(Mη)
such that p 6⊥ q and q ⊥Mη− when η 6= 〈〉.

Let p′, q′ denote the respective nonforking extensions of p, q to S(M∗
I ).

Since M∗
I is an a-model p′ ⊥/ a

M∗
I

q′. Choose a subset D such that AMη ⊆

D ⊆M∗
I such that |D| ≤ µ and p′′ ⊥/ a

D

q′′, where p′′, q′′ denote the respective

restrictions of p, q to D. Since {Mη : η ∈ I} is λ-full and |D| < λ, there is
b ∈ M∗

I realizing q′′. Thus, p has a forking extension to M∗
I , which implies

that M∗
I is λ-saturated by Lemma 2.1.

Finally, since {Mη : η ∈ I} is λ-full, |MI | = λ. Since λ ≥ 2|T |, the size of
an a-prime model over a set of size λ has size at most λ<κ. So, if λ<κ = λ,
then |M∗

I | = λ, hence is saturated.

Lemma 4.4 Fix an independent tree {Mη : η ∈ I} of a-models. Suppose
that 〈Jα : α ≤ δ〉 is a continuous, increasing sequence of subtrees of I and
〈Eα : α < δ〉 is a sequence of sequences such that Eα is an a-construction
sequence over MJα

and Eα is an initial segment of Eβ whenever α < β < δ.
Then any a-prime model over

⋃
E∗ is a-prime over MJδ

, where E∗ is the
shortest sequence such that each Eα is an initial segment.

Proof. It follows from Lemma 3.1 that each Eα is a-constructible over
MJδ

, so E∗ is a-constructible over MJδ
as well. Thus, if N is a-prime (hence

a-constructible) over
⋃
E∗, then N is a-constructible (hence a-prime) over

MJδ
.

Proof of Theorem 1.8. The implications (1) ⇒ (3) ⇒ (4) as well as
(5) ⇒ (4) are trivial.

We begin by showing (3) ⇒ (1). Suppose (3) holds and fix an indepen-
dent tree of a-models {Mη : η ∈ I}. Let M∗

I be any a-prime model over MI .
Form an increasing sequence 〈Nn : n ∈ ω〉 of a-submodels of M∗

I as follows:
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For each n ∈ ω, let In = {η ∈ I : lg(η) ≤ n}. Let N0 = M〈〉. We inductively
define Nn+1 as any a-prime submodel of M∗

I over Nn ∪MIn+1
. Let N∗ be

any a-prime submodel of M∗
I over

⋃
{Nn : n ∈ ω}. By Lemma 3.1 N∗ is also

a-prime over MI , hence N∗ and M∗
I are isomorphic over MI . So it suffices to

show that N∗ is a-minimal over MI . By Theorem 1.3(3) it suffices to show
that every nonalgebraic p ∈ S(N∗) is nonorthogonal to some Mη. So fix such
a nonalgebraic type p. By NDIDIP and Theorem 1.3(3) there is a smallest
n ∈ ω such that p 6⊥ Nn. If n = 0 then we finish since N0 = M〈〉. So assume
n > 0. Let Jn = {η ∈ I : lg(η) = n}. By Lemma 3.1 {Mη : η ∈ Jn} are
independent over Nn−1. Thus, we can find a set {M ′

η : η ∈ Jn} of submodels
of Nn such that each M ′

η is a-prime over Mη ∪Nn−1 and Nn is a-prime over⋃
{M ′

η : η ∈ Jn}. Since κ-NDOP implies µ-NDOP for any cardinal µ and
since p 6⊥ Nn, it follows from Theorem 1.3(4) that p 6⊥M ′

η for some η ∈ Jn.
But now, since Mη and Nn−1 are independent over Mη− , it follows from
another instance of NDOP that p 6⊥Mη.

The verification of (4) ⇒ (5) is identical once one checks that if the
original tree MI was normal, then the sequence 〈Nn : n ∈ ω〉 defined above
is normal as well.

(5) ⇒ (2) Fix a cardinal λ > 2|T |, a saturated model N of size λ, and
a small partial decomposition {Mη : η ∈ J} of N . The existence of a
saturated model of size λ ≥ 2|T | implies that λ<κ = λ (see VIII 4.7 of [7]).
Now {Mη : η ∈ J} is also a partial decomposition of C, so by Lemma 4.2
there is a tree I of size λ and a λ-full partial decomposition {Mη : η ∈ I} of
C extending it. By (5) M∗

I is a-minimal over MI , so Lemma 4.3 asserts that
M∗

I is saturated of power λ. Thus, there is an isomorphism h : M∗
I → N over

MJ . Then {h(Mη) : η ∈ I} is a decomposition of N extending {Mη : η ∈ J}.

(2) ⇒ (3) Assume that (2) holds. The heart of the argument is contained
in the proof of the following claim.

Claim. If {Mη : η ∈ H} is any partial decomposition of C, then any
a-prime model M∗

H over MH is a-minimal over MH .
Proof. Fix µ > |M∗

H |+ 2|T | such that µ<κ = µ and choose a saturated
model N of size µ containing M∗

H . By (2) there is a decomposition {Mη :
η ∈ H ′} of N extending {Mη : η ∈ H}. Since N is a-minimal over MH′ ,
M∗

H is a-minimal over MH by Corollary 1.4.

We first verify that NDIDIP holds. Choose an increasing sequence 〈Mn :
n ∈ ω〉 of a-models. Let Mω =

⋃
{Mn : n ∈ ω} and let M∗

ω be a-prime over
Mω =

⋃
{Mn : n ∈ ω}. We will show that every nonalgebraic type over
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M∗
ω is nonorthogonal to some Mn. Fix a regular cardinal λ > |M∗

ω| + 2|T |

satisfying λ<κ = λ. Note that (λ+n)<κ = λ+n for each n ∈ ω. Inductively
construct an increasing sequence 〈Nn : n ∈ ω〉 of models such that each Nn

is saturated of size λ+n, contains Mn, tp(N0/M
∗
ω) does not fork over M0, and

tp(Nn+1/M
∗
ωNn) does not fork over Mn+1Nn for each n ∈ ω. It is an easy

exercise in nonforking (using X 1.1 of [7]) to see that if a nonalgebraic type
in S(M∗

ω) were nonorthogonal to some Nn, then it would be nonorthogonal
to Mn. So let Nω =

⋃
{Nn : n ∈ ω}, let N∗

ω be a-prime over Nω and let
p ∈ S(N∗

ω) be nonalgebraic. It suffices to show that p 6⊥ Nn for some n ∈ ω.
Let M〈〉 ⊆ N0 be any a-prime submodel over ∅. Since {M〈〉} is a small,

partial decomposition of N0, (2) implies that there is an extension {Mη :
η ∈ J0} that is a decomposition of N0. Continuing inductively, since a
decomposition {Mη : η ∈ Jn} of Nn is a small, partial decomposition of the
saturated modelNn+1, (2) implies that there is an extension {Mη : η ∈ Jn+1}
that is a decomposition of Nn+1.

Let Jω =
⋃
{Jn : n ∈ ω}. Let E0 be an a-construction sequence for N0

over MJ0
. By Lemma 3.1, E0 is an a-construction sequence over MJ1

, so
as N1 is both a-prime and a-minimal over MJ1

, there is an a-construction
sequence E1 end extending E0 for N1 over MJ1

. Continuing inductively,
we construct a sequence 〈En : n ∈ ω〉 of sequences such that En is an a-
construction sequence over MJn

and En is an initial segment of En+1 for all
n ∈ ω. By Lemma 4.4 N∗

ω, which was chosen to be a-prime over Nω =
⋃
E∗,

is also a-prime over MJω
. The Claim above implies that N∗

ω is a-minimal
over MJω

, so p 6⊥Mη for some η ∈ Jω. Thus p 6⊥ Nn for some n ∈ ω.
Next we argue that T has κ-NDOP. Fix any a-model M and any set {Mi :

i < α < κ} of a-models that each contain and collectively are independent
over M . Let M∗ be a-prime over

⋃
{Mi : i < α} and choose λ > |M∗| +

2|T | such that λ<κ = λ. Arguing as above, first choose a saturated model
N containing M of size λ such that tp(N/M∗) does not fork over M (so
{Mi : i < α} are independent over N) and then inductively choose a set
{Ni : i < α} of saturated models, each of size λ+ such that each Ni contains
Mi ∪N and tp(Ni/M

∗ ∪N ∪{Nj : j < i}) does not fork over Mi ∪N . Thus
{Ni : i < α} are independent over N . As in the case above, if a type in
S(M∗) is nonorthogonal to some Ni, then it is nonorthogonal to Mi. So let
N∗ be a-prime over

⋃
{Ni : i < α} and fix a nonalgebraic type p ∈ S(N∗).

It is certainly sufficient to show that p 6⊥ Ni for some i < α.
As before, use (2) to choose a decomposition {Mη : η ∈ H} of N .

Then for each i < α use (2) to get an extension {Mη : η ∈ Ji} that is a
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decomposition of Ni. Without loss assume that Ji∩Jj = H for all i 6= j. As
notation, let Ii = H∪

⋃
{Jj : j < i} for each i < α and let I =

⋃
{Ii : i < α}.

Since {Ni : i < α} are independent over N , {Mη : η ∈ I} is a partial
decomposition of C. As in the NDIDIP case above, Lemmas 3.1 and 4.4
imply that N∗ is a-prime over MI =

⋃
{Mη : η ∈ I}. By the Claim, N∗ is

a-minimal over MI . Thus p 6⊥Mη for some η ∈ I by Theorem 1.3(3), which
implies that p 6⊥ Ni for some i < α.

Proof of Proposition 1.9. Fix a theory T with κ-NDOP. We recall
the usual definition of the depth dpI of a node η of a well-founded tree I,
namely

dpI(η) = sup{dpI(ν) + 1 : ν an immediate successor of η}

and we define the depth of I to be dpI(〈〉). We prove Proposition 1.9 by
induction on the depth of I. Fix an ordinal α and assume that every a-prime
model over a well-founded, independent tree of a-models of depth less than
α is a-minimal over the tree of a-models.

Suppose that I is well-founded of depth α and that {Mη : η ∈ I} is an
independent tree of a-models indexed by I. Let M∗

I be any a-prime model
over MI and choose any type p 6⊥M∗

I . We will show that p 6⊥Mη for some
η ∈ I, whence M∗

I is a-minimal over MI by Theorem 1.3. If I = {〈〉} then
there is nothing to prove. Otherwise, let A = {β : 〈β〉 ∈ I}. For each
β ∈ A, let I(β) = {ν : 〈β〉ˆν ∈ I} and let Mβ

ν = M〈β〉ˆν for each ν ∈ I(β).
Choose {Nβ : β ∈ A} such that each Nβ is an a-prime submodel of M∗

I

over
⋃
{Mβ

ν : ν ∈ I(β)} and M∗
I is a-prime over

⋃
{Nβ : β ∈ A}. Since the

original tree of a-models was independent, {Nβ : β ∈ A} is independent over
M〈〉. So, since κ-NDOP implies µ-NDOP for any cardinal µ, we can choose
β∗ ∈ A so that p 6⊥ Nβ∗ . By our definition of depth, dp(I(β∗)) < dp(I) = α,
so Nβ is a-minimal over

⋃
{Mβ∗

ν : ν ∈ I(β∗)}. So, by Theorem 1.3 p 6⊥ Mη

for some η ∈ I.

Proof of Corollary 1.10. Suppose that T has κ-NDOP and is shallow.
Fix any saturated model N with |N | > 2|T | and any small partial decom-
position {Mη : η ∈ J} of N . We will show that this partial decomposition
can be extended to a decomposition of N , which suffices by Theorem 1.8.
Let λ = |N |. By VIII 4.7 of [7] the existence of a saturated model of size
λ > 2|T | implies that λ<κ = λ. Let {Mη : η ∈ I} be a λ-full partial decom-
position of C extending {Mη : η ∈ J}, which exists by Lemma 4.2. Since T
is shallow, the index tree I is well-founded. Since T has κ-NDOP as well,
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Proposition 1.9 implies that M∗
I is a-minimal over MI , hence M∗

I is satu-
rated of power λ by Lemma 4.3. So M∗

I and N are both saturated of size
λ and contain MJ . Choose an isomorphism h : M∗

I → N over MJ . Then
{h(Mη) : η ∈ I} is our desired decomposition of N .

5 Countable theories and the proof of The-

orem 1.11

Until now, the cardinality of the language was irrelevant. In this section
we restrict ourselves to countable languages and prove Theorem 1.11. The
assumption of countability allows us to bring in some results from classical
descriptive set theory. In particular, the proof given here relies on the fact
that analytic subsets of Polish spaces have the property of Baire, i.e., for
every analytic A there is an open U such that A△U is meagre (see e.g., [3]).
At its heart, the proof presented here is similar to the argument that every
Σ1

1
-definable ultrafilter on ω is principal. The similarity between these two

arguments is expounded upon in [4].

Theorem 5.1 If T is countable and has NDOP, then T has µ-NDOP for
all infinite cardinals µ.

Proof. As noted in the remarks following Definition 1.6, the theorem
follows immediately if T is superstable. Consequently, we assume for the
whole of this section that

T is countable, stable, but not superstable, with NDOP.

In particular, κ(T ) = ℵ1 and the class of a-models of T is precisely the
class of ℵ1-saturated models of T . The first three subsections provide the
requisite background and Theorem 5.1 is proved in Subsection 5.4.

5.1 On stable systems

In this subsection we set notation and prove an extension theorem for stable
systems and an embedding theorem for pairs of stable systems.
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Definition 5.2 A good index set I is a nonempty, countable set of finite
sets that is closed under subsets, i.e., u ∈ I and v ⊆ u implies v ∈ I. An
I-system X = {Xu : u ∈ I} is a family of sets indexed by I such that
Xu ⊆ Xv whenever u ⊆ v. As notation, for any I-system X and any u ∈ I

X(u =
⋃

{Xv : v ( u} and X6⊇u =
⋃

{Xv : v 6⊇ u}

Throughout this section J denotes the set of finite subsets of ω
and K = {u ∈ J : |u| ≤ 1}.

The following notion is the major theme of Section XII.2 of [7].

Definition 5.3 A stable system M of models indexed by I is an I-system
M = {Mu : u ∈ I} of models such that Mu ⌣

M(u

M 6⊇u for all u ∈ I.

As a simple special case, note that {Mu : u ∈ K} is a stable system of
models if and only if M∅ ⊆ M{i} for each i ∈ ω and {M{i} : i ∈ ω} are
independent over M∅.

The following Lemma is our primary tool for constructing stable systems.

Lemma 5.4 Suppose that I is a good index set, u finite, u 6∈ I, but every
proper subset of u is an element of I. If {Mv : v ∈ I} is a stable system of
a-saturated models and Mu is a-prime over M(u, then {Mv : v ∈ I ∪ {u}}
is a stable system of a-saturated models. Moreover, if Mu is the union of
an a-construction sequence ā = 〈aα : α < β〉 over M(u, then ā is also an
a-construction sequence over

⋃
{Mv : v ∈ I}.

Proof. Let Iu = {v ∈ I : v ⊆ u}. Then Iu is a finite, good index set,
so by XII, Conclusion 2.11 of [7], Mu is ℓ-isolated over M(u. Also, by XII,
Lemma 2.3(2) of [7], the pair (M(u,

⋃
{Mv : v ∈ I}) satisfies the Tarski-

Vaught property, hence tp(Mu/M(u) has a unique (nonforking) extension
to a type in S(

⋃
{Mv : v ∈ I}) (see e.g., XII, Lemma 1.12(2) of [7]). In

particular, Mu ⌣
M(u

M 6⊇u and the ‘Moreover’ clause follows immediately. In

order to complete the proof that {Mv : v ∈ I ∪ {u}} is a stable system it
suffices to show that that

Mv ⌣
M(v

M 6⊇vMu
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where M 6⊇v =
⋃
{Mr : r ∈ I, v 6⊆ r}. for every v ∈ I satisfying v 6⊆ u (for

v ⊆ u the appropriate requirement is satisfied since {Mv : v ∈ I} is a stable
system). So fix v 6⊆ u, hence M(u ⊆M 6⊇v. From above,

Mu ⌣
M(u

MvM(vM 6⊇v

so Mv ⌣
M(uM(vM 6⊇v

Mu. Thus Mv ⌣
M(vM 6⊇v

Mu and the result follows by the

transitivity of nonforking.

Proposition 5.5 Suppose MK = {Mu : u ∈ K} is a stable system of a-
saturated models indexed by K and M is a-prime over

⋃
MK. Then there

is a stable system MJ = {Mu : u ∈ J} indexed by J such that

1. Each Mu ⊆ M and the u’th entry of MJ = the u’th entry of MK for
each u ∈ K;

2. M is a-prime over
⋃
MJ ;

3. For each u ∈ J \K, Mu is a-prime over
⋃
{Mv : v ( u}; and

4. For all pairs of good index sets I ⊆ I∗ ⊆ J ,
⋃
{Mu : u ∈ I∗} is the

union of an a-construction sequence over
⋃
{Mu : u ∈ I}.

Proof. Let 〈uj : j ∈ ω〉 be an enumeration of J \ K such that for
every j ∈ ω, if v ⊆ uj, then v ∈ K ∪ {uℓ : ℓ < j}. As notation, let
Jj = K ∪ {uℓ : ℓ < j} for each j ∈ ω. Note that each Jj is a good index
set. We construct NJ = {Nu : u ∈ J} as follows. First, let Nu = Mu for
each u ∈ K. Then for each j ∈ ω inductively choose Nuj

to be any a-prime
model over

⋃
{Nv : v ( u}. Let N∗ be any a-prime model over

⋃
NJ .

By successively applying Lemma 5.4 to each of the good index sets Jj we
obtain that {Nu : u ∈ Jj} is a stable system indexed by Jj such that Nuj

is
a-constructible over

⋃
{Nv : v ∈ Jj} for every j ∈ ω. It follows that

⋃
{Nu :

u ∈ J} is a-constructible over
⋃
{Nu : u ∈ K}. Since Nu = Mu for all u ∈ K,

this implies that N∗ is a-constructible (hence a-prime) over
⋃
{Mu : u ∈ K}.

By the uniqueness of a-prime models there is an isomorphism h : N∗ → M
fixing

⋃
{Mu : u ∈ K} pointwise. Define Mu = h(Nu) for each u ∈ J . It is

easy to see that MJ = {Mu : u ∈ J} satisfies Clauses (1)–(3).
As for (4), fix good index sets I ⊆ I∗ ⊆ J . Let 〈uj : j < α ≤ ω〉

be an enumeration of I∗ \ I such that for every j < α, if v ⊆ uj, then
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v ∈ I ∪ {uℓ : ℓ < j}. As notation, let I∗j = I ∪ {uℓ : ℓ < j} for each j < α.
Each I∗j is a good index set, so it follows from Lemma 5.4 and induction on
j < α that Nuj

is a-constructible over
⋃
{Nv : v ∈ I∗j } for each j. Clause (4)

follows from this by the transitivity of a-constructibility.

The next Definition is not given explicitly in [7], but the notion is inher-
ent in the proof of Lemma XII 2.3 there.

Definition 5.6 Given a good index set I and ∗ 6∈
⋃
I, let I∗ = I∪{u∪{∗} :

u ∈ I}. A linked pair of stable systems (A,B) is a stable system C indexed
by I∗ where for each v ∈ I∗, Cv = Av when ∗ 6∈ v and Cv = Bu when
v = u ∪ {∗}.

By unraveling the definitions, if (A,B) is a linked pair of stable systems
then bothA andB are stable systems indexed by I, Au � Bu and Au ⌣

A(u

B6⊇u

for all u ∈ I. Moreover, within the proof of Lemma 2.3 of Chapter XII of [7],
the second author shows that these consequences characterize this notion.
More precisely, if A,B are stable systems indexed by I and for each u ∈ I,
Au � Bu and Au ⌣

A(u

B6⊇u, then (A,B) are a linked pair of stable systems.

By using this characterization, the proof of the following Lemma is just
like the proof of the Downward Löwenheim-Skolem theorem and is left to
the reader.

Lemma 5.7 Let M be any stable system of models indexed by I and let
X be any I-system of sets in which each Xu is a countable subset of Mu.
Then there is a stable system A such that for each u ∈ I, Au is countable,
Xu ⊆ Au �Mu, and (A,M) is a linked pair of stable systems.

More interesting is Proposition 5.9. Its proof uses the following very
general lemma, which is also left to the reader.

Lemma 5.8 Suppose M is a-saturated, A,C are countable, A ⊆M , and q
is a type in countably many variables over AC that does not fork over A.
Then q is realized in M .

Proposition 5.9 Suppose that (A,B) and (A,M) are both linked pairs of
stable systems such that each Bu is countable and each Mu is a-saturated.
Then there is an elementary map f :

⋃
B →

⋃
M such that f |

⋃
A = id

and f(Bu) �Mu for each u ∈ I.
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Proof. Fix an enumeration {uj : j < j∗ ≤ ω} of I such that ui ⊆ uj

implies i ≤ j. To ease notation, write Bj in place of Buj
, B(j in place of

B(uj
and B6⊇j in place of B6⊇uj

. Note that the condition on our enumeration
ensures that

⋃
{Bk : k < j} ⊆ B 6⊇j. We construct f as the union of a chain

of increasing elementary maps

fj :
⋃

A ∪
⋃

{Bk : k < j} →
⋃

A ∪
⋃

{Mk : k < j}

that satisfy fj|
⋃
A = id and fj(Bk) �Mk for all k < j.

To begin, let f0 be the identity map on
⋃
A. Now assume that 0 < j < j∗

and that fj−1 has been defined. Since (A,B) is a linked pair of stable systems

Bj ⌣
AjB(j

⋃
AB6⊇j

Also, AjB(j ⊆ dom(fj−1), so fj−1(AjB(j) ⊆ Mj. Since Mj is a-saturated,
Lemma 5.8 ensures the existence of an elementary map fj ⊇ fj−1 with
fj(Bj) �Mj, and our proof is complete.

5.2 Pseudo ℓ-isolation

If the index set I is finite and M = {Mu : u ∈ I} is a stable system of
a-saturated models, then a type p ∈ S(

⋃
{Mu : u ∈ I}) is a-isolated if and

only if it is ℓ-isolated (see XII 2.11 of [7]). When one is analyzing a type
over the union of a stable system of models of a superstable theory, the
restriction that I be finite is inconsequential since the type is based on the
union of a finite subsystem. However, here our theory is strictly stable, so
we need an analogue of this result that holds for stable systems over infinite
index sets as well. The notion of pseudo ℓ-isolation satisfies our needs.

Definition 5.10 A formula ψ(x) (possibly with hidden parameters) decides
the formula ϕ(x, e) if either ψ(x) ⊢ ϕ(x, e) or ψ(x) ⊢ ¬ϕ(x, e). For M any
model, ψ(x) decides ϕ(x,M) if ψ(x) decides ϕ(x, e) for all e ∈M .

Lemma 5.11 Suppose M ⊆ A, M is an a-saturated model, and p ∈ S(A)
is an a-isolated type. Then for any L-formula ϕ(x, y) there is ψ(x) ∈ p that
decides ϕ(x,M).
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Proof. Fix an L-formula ϕ(x, y). Since p is a-isolated we can choose
q = {ψn(x) : n < n∗ ≤ ω} ⊆ p such that q ⊢ p and ψn ⊢ ψn−1 for all
0 < n < n∗. For each n < n∗ let

Zn = {e ∈M : ψn decides ϕ(x, e)}

Since T is stable each Zn is M -definable. Furthermore, since q ⊢ p and
p ∈ S(A) is a complete type,

⋃
n∈ω Zn = M . Since M is a-saturated this

implies M = Zm for some m < n∗. That is, ψm decides ϕ(x,M).

Definition 5.12 Suppose that M is an I-system of models. A type p ∈
S(

⋃
M) is pseudo ℓ-isolated over M (not over

⋃
M !) if for every u ∈ I and

every L-formula ϕ(x, y), there is ψ(x) ∈ p deciding ϕ(x,Mu).
A set D is pseudo ℓ-atomic over M if tp(d/

⋃
M) is pseudo ℓ-isolated

over M for all finite tuples d from D.

The following Lemma connects these notions with a-atomicity.

Lemma 5.13 Let M be an I-system of a-saturated models. For any set D,
D is a-atomic over

⋃
M if and only if D is pseudo ℓ-atomic over M .

Proof. Left to right is immediate by Lemma 5.11. For the converse let
p ∈ S(

⋃
M) be pseudo ℓ-isolated over M . For each L-formula ϕ(x, y) and

each u ∈ I, choose ψϕ,u(x) ∈ p that decides ϕ(x,Mu). Then q = {ψϕ,u(x) :
ϕ, u} witnesses that p is a-atomic over

⋃
M .

Lemma 5.14 Suppose that I is a good index set that is closed under unions,
i.e., u, v ∈ I implies u ∪ v ∈ I. Let M and M

′
be I-systems such that

Mu ⊆ M ′
u and tp(M ′

u/
⋃
M) is finitely satisfiable in Mu for all u ∈ I. If

p ∈ S(
⋃
M) is pseudo ℓ-isolated over M then p has a unique extension to

p′ ∈ S(
⋃
M

′
) (which is pseudo ℓ-isolated over M

′
).

Proof. For each ϕ(x, y) and u ∈ I choose ψ(x) ∈ p that decides
ϕ(x,Mu). We argue that ψ(x) decides ϕ(x,M ′

u) as well. To see this, choose
v ∈ I such that ψ(x) is over Mv. By our constraint on I we may assume
that u ⊆ v. If ψ(x, av) did not decide ϕ(x,M ′

u) then for some b ∈ M ′
u

θ(av, b) would hold, where θ(y, z) is ∃x1∃x2[ψ(x1, y)∧ψ(x2, y)∧ (ϕ(x1, z) 6↔
ϕ(x2, z))]. But then finite satisfiability would imply that θ(av, au) would
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hold for some au ∈ Mu, which would contradict the fact that ψ(x) decides

ϕ(x,Mu). Thus {ψϕ,u(x) : ϕ, u} has a unique extension to p′ ∈ S(
⋃
M

′
)

and the same formulas witness the pseudo ℓ-isolation of p′.

As notation, if M = {Mu : u ∈ J} is a stable system of models indexed
by J and X ⊆ ω, MX denotes the stable system (also indexed by J) {Mu∩X :
u ∈ J}, while MX denotes the model with universe

⋃
{Mu : u ∈ J ∩P(X)}.

The fact that MX is a model follows from the fact that the index set J
is closed under finite unions. It is readily checked that MX =

⋃
MX . In

particular, Mω =
⋃
M . The following Lemma is a stable system analogue

of Lemma 3.1.

Lemma 5.15 Let M be any stable system of a-saturated models indexed by
J , let X ⊆ ω and let Y = ω \X.

1. If D is pseudo ℓ-atomic over MX then tp(D/MX) has a unique exten-
sion to a type over Mω, and D is also pseudo ℓ-atomic over M .

2. Every a-construction sequence ā = 〈aα : α < β〉 over MX is an a-
construction sequence over Mω and tp(ā/Mω) does not fork over MX .

3. If NX , NY are a-prime over MX ,MY respectively, then

(a) tp(NX/MX) ⊢ tp(NX/MωNY ) and

(b) tp(Mω/MXMY ) ⊢ tp(Mω/NXNY ).

Proof. (1) Since M is a stable system tp(Mu/MX) is finitely satisfiable
over Mu∩X , so we can apply Lemma 5.14 to the stable systems MX and M .

Using (1) and Lemma 5.13, (2) follows by induction on β.
For both parts of (3) choose ϕ(x, y, z) and tuples c1 from NX , c2 from

NY , and d from Mω such that ϕ(c1, c2, d) holds.
We first show that there is ψ(x, e) ∈ tp(c1/MX) such that ψ(x, e) ⊢

ϕ(x, c2, d). Choose a finite u such that d is from Mu. Since MX is a stable
system and NX/MX is a-atomic, tp(c1/MX) is pseudo ℓ-isolated over MX .
So there is ψ(x, e) ∈ tp(c1/MX) such that ψ(x, e) ⊢ tpϕ(c1/Mu∩X). We
argue that this ψ(x, e) ⊢ ϕ(x, c2, d).

Let Z = Y ∪ u. Since X ∩ Z = u ∩X and since M is a stable system,
tp(MZ/MX) does not fork over Mu∩X . As well, tp(c2/MY ) is a-isolated,
hence tp(c2/MZ) is a-isolated as in (2). Since Mu∩X is an a-model, c2MZ
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is dominated by MZ over Mu∩X , hence MX ⌣
Mu∩X

MZc2 follows by symme-

try. Since Mu∩X is a model, the pair (Mu∩X ,MZc2) has the Tarski-Vaught
property, hence tpϕ(c1/Mu∩X) has a unique extension qϕ ∈ Sϕ(MZc2) and
ψ(x, e) ⊢ qϕ. In particular, ψ(x, e) decides ϕ(x, c2, d). But since ϕ(c1, c2, d)
holds, it decides it positively, i.e., ψ(x, e) ⊢ ϕ(x, c2, d). Thus, (3a) holds.

To establish (3b) choose d′ such that tp(d′/MXMY ) = tp(d/MXMY ). It
suffices to show that ϕ(c1, c2, d) holds. So choose ψ(x, e) as above and let

θ(y, d, e) := ∀x[ψ(x, e) → ϕ(x, y, d)]

By our choice of ψ(x, e), θ(y, d̄, e) ∈ tp(c2/Mω). By (1) tp(c2/MY ) ⊢
tp(c2/Mω), so there is δ(y, e′) ∈ tp(c2/MY ) such that δ(y, e′) ⊢ θ(y, d, e).
Since e, e′ ∈MX ∪MY , it follows that δ(y, e′) ⊢ θ(y, d′, e), hence θ(c2, d

′, e).
Thus, ϕ(c1, c2, d

′) holds as required.

5.3 The standard topology on P(ω)

The standard topology on P(ω) is obtained by positing that the sets

UF,G = {X ∈ P(ω) : F,G are finite subsets of ω, F ⊆ X, X ∩G = ∅}

form a basis of open sets. Topologized in this way, the natural mapping be-
tween subsets of ω and characteristic functions is a homeomorphism between
P(ω) and the Cantor set ω2.

Note that UF,G = ∅ if and only if F ∩ G 6= ∅. As notation, let D =
{(F,G) : F,G are finite subsets of ω and F∩G = ∅}. For (F,G), (F ′, G′) ∈ D

we write (F,G) ≤ (F ′, G′) if and only if F ⊆ F ′ and G ⊆ G′.
It is easily checked that a set R ⊆ P(ω) is nowhere dense if and only if

for every (F,G) ∈ D there is (F ′, G′) ∈ D such that (F ′, G′) ≥ (F,G) and
UF ′,G′ ∩ R = ∅. Recall that a set Z ⊆ P(ω) is meagre if it is a countable
union of nowhere dense subsets.

The following Lemma is routine, but is included for completeness.

Lemma 5.16 Let Z be any meagre subset of P(ω). Then:

1. There is X ∈ P(ω) such that X,ω \X 6∈ Z.

2. There are {Xi : i ∈ ω} ⊆ P(ω) \ Z with Xi ∩Xj = ∅ when i < j < ω.
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Proof. Suppose that Z =
⋃

n∈ω Rn, where each Rn is nowhere dense.
(1) Using the characterization of nowhere denseness given above, in-

ductively construct a sequence 〈(Fn, Gn) : n ∈ ω〉 from D that satisfies
(Fn, Gn) ≤ (Fn+1, Gn+1), UF2n,G2n

∩ Rn = ∅, and UG2n+1,F2n+1
∩ Rn = ∅.

Take X =
⋃

n∈ω Fn. Then X ∈ UFn,Gn
for all n, so X 6∈ Z. Furthermore,

ω \X ∈ UGn,Fn
for all n, so ω \X 6∈ Z as well.

(2) Fix a bijection Φ : ω → ω×ω. Call an ω-sequence F = 〈Fi : i ∈ ω〉 of
(finite) subsets of ω an approximating sequence if {Fi : i ∈ ω} are pairwise
disjoint and

⋃
{Fi : i ∈ ω} is finite. We say that an approximating sequence

F = 〈Fi : i ∈ ω〉 satisfies Condition k if, writing Φ(k) = (i, j),

UFi,Gi
∩Rj = ∅

where Gi =
⋃
{Fl : l 6= i}.

We inductively construct approximating sequences Fn = 〈F n
i : i ∈ ω〉

for each n ∈ ω such that F n
i ⊆ Fm

i for all i and all n < m < ω and Fn

satisfies Condition k for all k < n.
To start, define F0 = 〈F 0

i : i ∈ ω〉, where each F 0
i = ∅. Now assume that

Fn has been defined and let Φ(n) = (i∗, j∗). Let G =
⋃
{F n

l : l 6= i∗}. Since
Rj∗ is nowhere dense there is (F ′, G′) ≥ (F n

i∗ , G) such that UF ′,G′ ∩Rj∗ = ∅.
Let m be any integer 6= i∗ such that F n

m = ∅. Let F n+1
i∗ = F ′, F n+1

m = G′ \G,
and F n+1

l = F n
l for all l 6= i∗,m. Then Fn+1 = 〈F n+1

i : i ∈ ω〉 satisfies
Condition k for all k ≤ n.

Finally, for each i ∈ ω take Xi =
⋃
{F n

i : n ∈ ω}.

5.4 Proof of Theorem 5.1

By the remarks following Definition 1.6, it suffices to show that T has ω1-
NDOP. Choose a family {Mi : i < ω} of a-saturated models that contain
and are independent over common a-saturated model M∅, and let M be
a-prime over

⋃
{Mi : i < ω}. Fix a nonalgebraic type p ∈ S(M). We

will eventually show that p is nonorthogonal to some Mi, which suffices by
Theorem 1.3.

Let MK denote the stable system indexed by K, where M{i} = Mi for
each i ∈ ω. Choose a stable system MJ = {Mu : u ∈ J} extending MK

satisfying Clauses (1)–(4) of Proposition 5.5.
We adopt the notation prior to Lemma 5.15 for the whole of this section,

not only for the stable system M in the claim below, but also for the related
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systems A and B that follow. For each X ⊆ ω let

NX = {N �M : N is a-prime over MX and M is a-prime over N ∪Mω}

For each finite ∆ ⊆ L, let W∆ = {X ⊆ ω : p 6⊥∆ N for some N ∈ NX} and
let W =

⋃
{W∆ : ∆ ⊆ L finite}.

Claim 5.17 For all X ⊆ ω, at least one of X, (ω −X) ∈ W .

Proof. Fix X ⊆ ω and let Y = ω \X. Let NX , NY be a-prime models
over MX ,MY respectively. Let M∗ be a-prime over NX ∪ NY ∪Mω. We
argue that M∗ is also a-prime over each of the four sets Mω, NX ∪ Mω,
NY ∪Mω, and NX ∪NY .

To see this, first note that by applying Proposition 5.5(4) with I =
(P(X) ∪ P(Y )) ∩ J and I∗ = J , Mω is a-constructible over MX ∪ MY .
By Lemma 5.15(3b) Mω is a-constructible over NX ∪ NY . Thus, M∗ is a-
constructible (hence a-prime) over NX ∪ NY . As well, by Lemma 5.15(2)
NX is a-constructible over Mω. By Lemma 5.15(3a) NY is a-constructible
over Mω ∪ NX . Hence M∗ is a-prime over Mω as well as Mω ∪ NX . That
M∗ is a-prime over Mω ∪NY is symmetric.

But now, recall that M is also a-prime over Mω. So there is an iso-
morphism h : M∗ → M fixing Mω pointwise. Since M is a stable system
MX ⌣

M∅

MY . Also, h(NX) is a-prime over MX , hence dominated by MX over

M∅ and dually, h(NY ) is dominated by MY over M∅. Thus h(NX)⌣
M∅

h(NY ).

But p ∈ S(M) and M is a-prime over h(NX) ∪ h(NY ). By NDOP, either
p 6⊥ h(NX) or p 6⊥ h(NY ). As the cases are symmetric, assume p 6⊥ h(NX),
Finally, since M is a-prime over h(NX) ∪Mω, h(NX) ∈ NX , so X ∈ W .

Claim 5.18 Each W∆ is a Σ1

1
-subset of P(ω).

Proof. Fix ∆ ⊆ L finite. Choose C ⊆ M countable such that p is
based and stationary over C. Since M is a-atomic over Mω we can choose
a countable set Z ⊆Mω such that tp(C/Z) ⊢ tp(C/Mω). Using Lemma 5.7
find a stable system A indexed by J in which every Au is countable, Z ⊆ Aω,
and (A,M) is a linked pair of stable systems. Note that tp(C/Mω) does not
fork over Aω by transitivity.
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Subclaim 5.19 X ∈W∆ if and only if there exist a countable B such that
(A,B) is a linked pair of stable systems and tp(C/Bω) does not fork over
Aω, a countable model N ′ that is pseudo ℓ-atomic over BX , a countable set
D ⊇ N ′C, a tuple d from D, a formula ϕ(x, yz) ∈ ∆, and a a type q ∈ S(D)
that does not fork over N ′ such that R∆((p|D) ∪ {ϕ(x, db)}) < R∆(p) for
some (every) b realizing q.

It is easily verified that

{(N ′, B,X) : N ′ is pseudo ℓ-atomic over BX}

is a Borel subset of a product of Polish spaces projecting onto P(ω) so the
Σ1

1
-ness of W∆ is an immediate consequence of the Subclaim.
To establish the subclaim (and hence the claim) first suppose that X ∈

W∆. Choose N ∈ NX such that p 6⊥∆ N . Choose D0, d, ϕ, and q0 ∈ S(D0)
from Definition 2.15 witnessing this. Choose a countable N ′ � N such that
q0 is based on N ′. Since N ′, C and the language L are countable, we can
find a countable subset D ⊆ D0 containing N ′Cd and q ∈ S(D) parallel to
q0 such that R∆((p|D)∪{ϕ(x, db)}) < R∆(p) for any b realizing q. Since N ′

is a-atomic over MX , it is also pseudo ℓ-atomic over MX by Lemma 5.13.
Choose E ⊆MX countable so that for all finite tuples e from N ′, all ϕ(x, y)
and all u ∈ J∩P(X) there is an L(E)-formula ψ(x) ∈ tp(e/MX) that decides
ϕ(x,Mu).

Now arguing as in Lemma 5.7 there is a stable system B indexed by J
such that each Bu is countable, E ⊆ BX , Au � Bu � Mu, and (A,B) is
a linked pair of stable systems. Since C⌣

Aω

Mω, we have C⌣
Aω

Bω. By our

choice of E, N ′ is pseudo ℓ-atomic over BX .
Conversely, fix X ∈ P(ω) and assume B, N ′, D, d, ϕ, and q are as in the

Subclaim. It follows immediately from Definition 2.15 that p 6⊥∆ N ′. By
Proposition 5.9 there is an elementary map f : B →M such that f |Aω = id
and f(Bu) ⊆ Mu for each u ∈ J . Since tp(C/Mω) does not fork over Aω

and since Aω is a model, tp(Bω/CAω) = tp(f(Bω)/CAω). Let σ be an
automorphism of C extending f that fixes CAω pointwise. Since p is based
and stationary over C, its parallelism class is invariant under the action of
σ. Thus, by replacing the given B by f(B), p by σ(p), and N ′ by σ(N ′), we
may assume that Bu ⊆Mu for all u ∈ J while preserving p 6⊥∆ N ′.

Now fix an enumeration 〈a′n : n ∈ ω〉 of N ′. Since both N ′ and BX are
countable and since M realizes every a-isolated type over MX , the existence
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theorem for a-isolated types allows us to find N ′′ = 〈a′′n : n ∈ ω〉 from
M such that 〈a′′n : n ∈ ω〉 is an a-construction sequence over MX with
tp(N ′/BX) = tp(N ′′/BX). Since both N ′ and N ′′ are pseudo ℓ-atomic over
BX , Lemma 5.15(1) implies that tp(N ′/Bω) = tp(N ′′/Bω). Since M is
ℵ1-homogeneous there is C ′′ ⊆ M such that tp(N ′C/Bω) = tp(N ′′C ′′/Bω).
Thus p′′ 6⊥∆ N ′′, where p′′ ∈ S(C ′′) is conjugate to p over Bω. Note that
tp(C ′′/Mω) = tp(C/Mω) since tp(C/Bω) ⊢ tp(C/Mω). Since M is ℵ1-
homogeneous over Mω, there is N0 = 〈an : n ∈ ω〉 from M such that

C ′′〈a′′n : n ∈ ω〉 ≡Mω
C〈an : n ∈ ω〉

Summarizing all of this, N0 is a countable subset of M , p 6⊥∆ N0, and N0 is
a-constructible over MX .

Next, let N̂ = 〈an : n < β〉 be an a-constructible model over MX , whose
construction sequence end extends N0 = 〈an : n ∈ ω〉. By Lemma 5.15(2) N̂
is an a-construction sequence over Mω. Let M̂ be a-prime over N̂Mω. Note
that M̂ is also a-prime over N0Mω. But recall that M is a-prime over Mω

and N0 is a countable subset of M . Thus M is also a-prime over N0Mω. So,
by the uniqueness of a-prime models, there is an isomorphism h : M̂ → M
over N0Mω. Finally, take N = h(N̂). Since N0 ⊆ N , p 6⊥∆ N and M is
a-prime over NMω. Thus, N witnesses that X ∈ W∆, which completes the
proof of Claim 5.18.

Claim 5.20 p 6⊥MF for some finite F ⊆ ω.

Proof. We first argue that W is not meagre. If it were, then by
Lemma 5.16(1) there would be X ⊆ ω such that X and ω \X 6∈ W , which
would contradict Claim 5.17.

Since W is not meagre, some W∆ is not meagre. Fix such a ∆. Since
Σ1

1
-subsets of a Polish space have the property of Baire (see e.g., Theorem

7 of XII.8 of [3]) it follows from Claim 5.18 that there is a nonempty open
subset UF,G of P(ω) such that UF,G \W∆ is meagre. But UF,G is naturally
homeomorphic to P(ω), so the translation of Lemma 5.16(2) is that there
are sets {Xi : i ∈ ω} ⊆ W∆ such that Xi ∩Xj = F for all i < j < ω. For
each i ∈ ω choose Ni ∈ NXi

such that p 6⊥∆ Ni. Since M is a stable system
{MXi

: i ∈ ω} is independent over MF . Since each Ni is a-prime over MXi

and since MF is a-saturated, it follows that {Ni : i ∈ ω} is independent over
MF . Since p 6⊥∆ Ni for each i, Proposition 2.16 entails that p 6⊥MF .
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To complete the proof of the theorem, fix a finite F ⊆ ω such that
p 6⊥ MF . Taking I = {∅} ∪ {{i} : i ∈ F} and I∗ = P(F ) in Clause (4) of
Proposition 5.5, MF is a-prime over

⋃
{Mi : i ∈ F}. As F is finite, it follows

from NDOP that p 6⊥Mi for some i ∈ F and we finish.
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