1. $(20$ points $=10+10) A, B, C$ participate in a Shamir $(3,2)$ secret sharing scheme. They work mod 11. A receives the share $(1,5), B$ receives $(2,9)$, and C receives $(3,3)$.
(a) Show that at least one of the three shares is incorrect.
(b) Suppose A and C have correct shares. Find the secret.
2. ($30 \mathrm{pts}=10+10+10$) (a) Let K be the DES key consisting of all 1's. Explain why DES encryption E_{K} is the same as DES decryption D_{K} (that is, $E_{K}(x)=D_{K}(x)$ for all $\left.x\right)$.
(b) Suppose H is a cryptographic hash function. Nelson designs a new hash function H_{1} as follows: Let x be an input. Nelson computes $H(x)$, then lets K be the rightmost 56 bits of $H(x)$. He then computes the DES encryption $E_{K}(00000 \cdots 0)$, where $00000 \cdots 0$ is the message consisting of 640 's. The resulting 64 -bit output is what Nelson calls $H_{1}(x)$. State what attack Eve can use to find a collision for H_{1}, and why the attack should work (on present-day computers).
(c) Let $H(x)$ be a cryptographic hash function. Nelson tries again. He takes a large prime p and a primitive root α for p. For an input x, he computes $\beta \equiv \alpha^{x}(\bmod p)$, then sets $H_{2}(x)=H(\beta)$. The function H_{2} is not fast enough to be a hash function. Find one other property of hash functions that fails for H_{2}, and explain why it fails.
3. (15 points $=10+5$) Recall the ElGamal signature scheme: Alice wants to sign a message m. She chooses a prime p, a primitive root α, and a secret integer a, and computes $\beta \equiv \alpha^{a}$ $(\bmod p)$. The numbers p, α, β are made public. To sign m, Alice computes integers r and s. The signed message is (m, r, s). Bob verifies the signature by checking that $\beta^{r} r^{s} \equiv \alpha^{m}$ $(\bmod p)$.
(a) Suppose Eve chooses $r_{1} \equiv \alpha^{-1} \beta(\bmod p)$ and $s_{1} \equiv-r_{1}(\bmod p-1)$. This allows Eve to forge a message m_{1}. Determine what the message m_{1} is.
(b) Explain how to use a hash function to prevent the forgery in part (a). What property of a hash function is used here?
4. (15 points) Suppose n is the product of two large primes, and that s is given. Peggy wants to prove to Victor, using a zero knowledge protocol, that she knows a value of x with $x^{2} \equiv s(\bmod n)$. Peggy and Victor do the following:
(1) Peggy chooses three random integers r_{1}, r_{2}, r_{3} with $r_{1} r_{2} r_{3} \equiv x(\bmod n)$.
(2) Peggy computes $x_{i} \equiv r_{i}^{2}$, for $i=1,2,3$ and sends x_{1}, x_{2}, x_{3} to Victor.
(3) Victor checks that $x_{1} x_{2} x_{3} \equiv s(\bmod n)$.

Design the remaining steps of this protocol so that Victor is convinced that the probability is less than a 1% that Peggy is lying.
5. (20 points $=10+10$) (a) Let p be a large prime. Alice chooses a secret integer k and encrypts messages by the function $E_{k}(m)=m^{k}(\bmod p)$. Suppose Eve knows a cipher text c and knows the prime p. She captures Alice's encryption machine and decides to try to find m by a birthday attack. She makes two lists. The first list contains $c \cdot E_{k}(x)^{-1}$ $(\bmod p)$ for some random choices of x. Describe how to generate the second list, state approximately how long the two lists should be, and describe how Eve finds m if her attack is successful.
(b) (this part has no relation to part (a)) The number 12347 is prime. Suppose Eve discovers that $2^{10000} \cdot 79 \equiv 2^{5431}(\bmod 12347)$. Find an integer k with $0<k<12347$ such that $2^{k} \equiv 79(\bmod 12347)$.

