1. (a) The line through A and B has slope 4 . The line through A and C has slope -1 . Therefore, the three points are not on the same line, so at least one must be incorrect.
(b) The line through A and C has slope -1 , so it has equation $y \equiv-(x-1)+5 \equiv$ $-x+6(\bmod 11)$. The secret is the constant term, which is 6 .
2. (a) There are round keys K_{1}, \ldots, K_{16}. Since K is all 1 s , each K_{i} is all 1s. To decrypt, use the keys in reverse order: K_{16}, \ldots, K_{1}. Since all the keys are the same, this is the same as encryption.
(b) A birthday attack (with lists of length about 2^{28}) will find two inputs x_{1} and x_{2} such that the rightmost 56 bits of $H\left(x_{1}\right)$ are the same as those for $H\left(x_{2}\right)$. This means that the keys K_{1}, K_{2} for the second step are the same, so the outputs of Nelson's hash are the same. Another way is to use a birthday attack with lists of length 2^{32} on the 64 -bit output of H_{1}. A third way is to use a brute force search in place of these birthday attacks. This is possible on current large computers.
(c) Since $\alpha^{x} \equiv \alpha^{x+p-1}(\bmod p)$, we have $H_{2}(x)=H_{2}(x+p-1)$. Therefore, H_{2} is not collision free.
3. (a) $\alpha^{m_{1}} \equiv \beta^{r_{1}} r_{1}^{s_{1}} \equiv\left(\alpha^{a}\right)^{r_{1}}\left(\alpha^{-1} \beta\right)^{-r_{1}} \equiv \alpha^{a r_{1}} \alpha^{r_{1}} \alpha^{-a r_{1}} \equiv \alpha^{r_{1}}$. Therefore, the message is $m_{1}=r_{1}$.
(b) Let H be the hash function. Sign $H(m)$ instead of m. Then Eve needs to find m such that $H(m)=r_{1}$. This is very hard since H is preimage resistant.
4. Victor sends Peggy $i, j \in\{1,2,3\}$. Peggy sends r_{i} and r_{j}. Victor checks that $r_{i}^{2} \equiv x_{i}$ and $r_{j}^{2} \equiv x_{j}$. They repeat 5 times (with new r_{1}, r_{2}, r_{3}). The probability of Peggy successfully lying on a given round is $1 / 3$, so after 5 rounds the probability is $(1 / 3)^{5}<.01$.

Another possibility is for Victor to ask for only one r_{i}. Then Peggy has $2 / 3$ probability of successfully cheating, so there should be 12 repetitions: $(2 / 3)^{12}<.01$.
5. (a) The first list is $c \cdot E_{k}(x)^{-1}(\bmod p)$ for random values of x. The second list is $E_{k}(y)$ for random values of y. If both lists have length approximately \sqrt{p}, then we expect a match. If $c \cdot E_{k}(x)^{-1} \equiv E_{k}(y)$, then

$$
c \equiv E_{k}(x) E_{k}(y) \equiv x^{k} y^{k} \equiv(x y)^{k} \quad(\bmod p)
$$

Therefore, the message is probably $m \equiv x y(\bmod p)$.
(b) $79 \equiv 2^{5431-10000} \equiv 2^{-4569}(\bmod p)$. Since $2^{12346} \equiv 1(\bmod 12347)$, we have

$$
79 \equiv 2^{-4569} 2^{12346} \equiv 2^{7777}
$$

Therefore, $k=7777$.

