MATH/CMSC 456 (Washington) Exam 2 Solutions Spring 2017

1. $(15$ points $=10+5)(a)$ Bob's is weaker. Use a Meet-in.the-Middle attack. Choose a plaintext-ciphertext pair (m, c). Make two lists: (1) $E_{K}\left(E_{K}(m)\right.$) for all keys K. (2) $D_{L}(c)$ for all keys L. Look for matches between the two lists. For each pair (K, L) that yields a match, test whether $E_{L}\left(E_{K}\left(E_{K}(m)\right)\right)=c$ for the other nine plaintext-ciphertext pairs. Probably only one key pair survives. This yields the key.
(b) Backwards compatibility: If a 3-DES computer communicates with a 1-DES computer, it can let $K_{1}=K_{2}$ and get single encryption.
2. (10 points) It is easy to find collisions: $H(x)=H(x+p-1)$ by Fermat's theorem. It is preimage resistant: Given y, it is hard to find x such that $g^{x} \equiv y(\bmod p)$ since this is a discrete \log problem.
3. (10 points) There are $N=10^{15}$ "birthdays" and $r=10^{9}$ "people." The probability is approximately

$$
1-e^{-r^{2} / 2 N}=1-e^{-500} \approx 1 .
$$

Therefore, it is very likely that two of the numbers are equal.
4. (15 points) The line through $(1,13)$ and $(3,12)$ has slope $(12-13) /(3-1)=-1 / 2 \equiv 36(\bmod 73)$. The equation of the line is $y \equiv 36(x-1)+13$. When $x=4$, we have $y \equiv 36(4-1)+13=121 \equiv 48(\bmod 73)$. So $*=48$.
5. (20 points $=10+5+5$) (a) In each round, Peggy chooses random r_{1} and r_{2}. They do not have to have any relation to s.
(b) Step 2.5: Victor checks that $h_{1} h_{2} \equiv h(\bmod p)$.
(c) Victor will see that h_{1} and h_{2} are the same as before. He asks for the r_{j} that he didn't ask for before and computes $s=r_{1}+r_{2}$.
6. (15 points $=5+10$) (a) Since $s^{e} \equiv m(\bmod n)$, we can raise each side to the 7 th power and obtain $\left(s^{7}\right)^{e} \equiv m^{7}$. Therefore, $\left(m^{7}, s^{7}\right)$ is a valid signed message.
(b) Alice computes $s \equiv H(m)^{d}(\bmod n)$. Then (m, s) is valid if $H(m) \equiv s^{e}(\bmod n)$. If $(m, 123)$ is valid, then $H(m) \equiv 123^{e}(\bmod n)$. It is hard to find m since H is preimage resistant.
7. $(15$ points $=5+10)(\mathrm{a}) \infty+(1,3)=(1,3)$.
(b) The line through $(1,3)$ and $(5,2)$ has slope $(2-3) /(5-1)=-1 / 4 \equiv 5(\bmod 7)$. The line is $y \equiv$ $5(x-1)+3=5 x-2$. Intersect with $y^{2} \equiv x^{3}+x$ to get $0 \equiv x^{3}-25 x^{2}+\cdots$. Then $25=$ sum of roots $=1+5+x$, so $x \equiv 5(\bmod 7)$. The y-value is $5 x-2=23 \equiv 2$. Reflect across the x-axis to get the answer: $(5,5)$.

MATH/CMSC 456 (Washington) Exam 2 Solutions Spring 2017

1. (10 points) It is easy to find collisions: $H(x)=H(x+p-1)$ by Fermat's theorem. It is preimage resistant: Given y, it is hard to find x such that $g^{x} \equiv y(\bmod p)$ since this is a discrete \log problem.
2. (15 points) The line through $(1,13)$ and $(3,12)$ has slope $(12-13) /(3-1)=-1 / 2 \equiv 30(\bmod 61)$. The equation of the line is $y \equiv 30(x-1)+13$. When $x=5$, we have $y \equiv 30(5-1)+13=133 \equiv 11(\bmod 61)$. So $*=11$.
3. (10 points) There are $N=10^{16}$ "birthdays" and $r=10^{10}$ "people." The probability is approximately

$$
1-e^{-r^{2} / 2 N}=1-e^{-5000} \approx 1
$$

Therefore, it is very likely that two of the numbers are equal.
4. (15 points $=5+10)$ (a) Since $s^{e} \equiv m(\bmod n)$, we can raise each side to the 5 th power and obtain $\left(s^{5}\right)^{e} \equiv m^{5}$. Therefore, $\left(m^{5}, s^{5}\right)$ is a valid signed message.
(b) Alice computes $s \equiv H(m)^{d}(\bmod n)$. Then (m, s) is valid if $H(m) \equiv s^{e}(\bmod n)$. If $(m, 765)$ is valid, then $H(m) \equiv 765^{e}(\bmod n)$. It is hard to find m since H is preimage resistant.
5. (20 points $=10+5+5)$ (a) In each round, Peggy chooses random r_{1} and r_{2}. They do not have to have any relation to s.
(b) Step 2.5: Victor checks that $h_{1} h_{2} \equiv h(\bmod p)$.
(c) Victor will see that h_{1} and h_{2} are the same as before. He asks for the r_{j} that he didn't ask for before and computes $s=r_{1} r_{2}$.
6. (15 points $=5+10)(\mathrm{a}) \infty+(1,0)=(1,0)$.
(b) The line through $(1,0)$ and $(4,4)$ has slope $(4-0) /(4-1)=4 / 3 \equiv 5(\bmod 11)$. The line is $y \equiv 5(x-1)=$ $5 x-5$. Intersect with $y^{2} \equiv x^{3}+x$ to get $0 \equiv x^{3}-25 x^{2}+\cdots$. Then $25=$ sum of roots $=1+4+x$, so $x \equiv 9$ $(\bmod 11)$. The y-value is $5 x-5=40 \equiv 7$. Reflect across the x-axis to get the answer: $(9,4)($ or $(9,-7))$.
7. (15 points $=10+5$) (a) Bob's is weaker. Use a Meet-in.the-Middle attack. Choose a plaintext-ciphertext pair (m, c). Make two lists: (1) $E_{K}\left(E_{K}(m)\right)$ for all keys K. (2) $D_{L}(c)$ for all keys L. Look for matches between the two lists. For each pair (K, L) that yields a match, test whether $E_{L}\left(E_{K}\left(E_{K}(m)\right)\right)=c$ for the other nine plaintext-ciphertext pairs. Probably only one key pair survives. This yields the key.
(b) Backwards compatibility: If a 3 -DES computer communicates with a 1-DES computer, it can let $K_{1}=K_{2}$ and get single encryption.

