MATH/CMSC 456 (Washington)

Sample Exam 2

1. Suppose p is a large prime, α is a primitive root, and $\beta \equiv \alpha^{a}(\bmod p)$. The numbers p, α, β are public. Peggy wants to prove to Victor that she knows a without revealing it. They do the following:
(1) Peggy chooses a random number $r(\bmod p-1)$.
(2) Peggy computes $h_{1} \equiv \alpha^{r}(\bmod p)$ and $h_{2} \equiv x \alpha^{a-r}(\bmod p)$ and sends h_{1}, h_{2} to Victor.
(3) Victor chooses $i=1$ or $i=2$ asks Peggy to send either $r_{1}=r$ or $r_{2}=a-r$ $(\bmod p-1)$.
(4) Victor checks that $h_{1} h_{2} \equiv \beta(\bmod p)$ and that $h_{i} \equiv \alpha^{r_{i}}(\bmod p)$.
(5) They repeat steps (1) through (4) one more time.
(a) Suppose Peggy does not know a but she correctly guesses that Victor will ask for r_{1} in the first round and r_{2} in the second round. What strategy should Peggy use to be able to answer both of Victor's questions correctly?
(b) Suppose Peggy does not know a. She knows the value of r_{1} such that $\alpha^{r_{1}} \equiv h_{2}$ $(\bmod p)$, but Victor asks for r_{2} in the first round. Why will it be difficult for Peggy to compute the value of r_{2} quickly?
2. (a) Suppose Alice uses a budget hash function h to sign her checks, so she signs a check m by signing $h(m)$ where $h(m)$ is a string of 20 binary bits. This yields pairs $(m, \operatorname{sig}(h(m))$, which she stores on her computer. Suppose Eve has a set of 10^{4} fraudulent checks and she wants to put Alice's signature on at least one of them. Eve breaks into Alice's computer and obtains a list of 10^{4} signed checks ($m, \operatorname{sig}(h(m)$). Describe how Eve can (with very high probability) put Alice's signature on some fraudulent check? (Note: $2^{20} \approx 10^{6}$)
(b) Suppose Alice upgrades to a better hash function h_{1} such that $h_{1}(m)$ is a string of around 200 bits. Why is it unlikely that Eve will be able to use a birthday attack to put Alice's signature on a fraudulent check.
3. Consider the following signature algorithm. Alice wants to sign a message m. She chooses a large prime p and a primitive root α. She chooses a secret integer a and calculates $\beta \equiv \alpha^{a}(\bmod p)$. She publishes (p, α, β) but keeps the number a secret. To sign the message, she does the following:
(1) Chooses a random integer k with $\operatorname{gcd}(k, p-1)=1$.
(2) Computes $r \equiv \alpha^{k}(\bmod p)$.
(3) Computes $s \equiv a m+k r(\bmod p-1)$.
(4) The signed message is (m, r, s).

Bob verifies the signature as follows:
(1) Computes $u_{1} \equiv \alpha^{s}(\bmod p)$.
(2) Computes $u_{2} \equiv \beta^{m} r^{r}(\bmod p)$.
(3) Declares the signature valid if $u_{1} \equiv u_{2}(\bmod p)$.
(a) Show that if Alice signs the document correctly then the verification congruence holds.
(b) Suppose Eve finds out the value of k that Alice used. Describe how Eve can figure out the value of a. (Note: she might at first have more than one possibility (but probably not very many possibilities) for a; you should include a description of how she determines which is the correct one.)
(c) If Eve chooses a value of r for her own message m, why will she have a hard time finding a value of s that makes the verification congruence hold?
4. Consider the following Feistel cryptosystem consisting of three rounds. The key K is the same for each round and has 64 bits. The input for the i th round consists of 64 bits, divided into a left half and a right half: $L_{i-1} R_{i-1}$, where L_{i} an R_{i} each have 32 bits. The output is $L_{i} R_{i}$, where $L_{i}=R_{i-1}$ and $R_{i}=L_{i-1} \oplus$ $f\left(K, R_{i-1}\right)$. The function f is given by $f(K, R) \equiv R^{K}\left(\bmod 2^{64}\right)$, written as a 64-bit string.

If you receive the ciphertext $L_{3} R_{3}$, describe how you would decrypt it to obtain $L_{0} R_{0}$. Show that this decryption works. (You may not simply quote results about this type of decryption.)
5. Consider the following elliptic curve protocol: Alice wants to send a message m to Bob. Alice and Bob publicly determine an elliptic curve E mod a large prime p and an integer n such that $n P=\infty$ for all points P on E. Alice represents m as a point P_{0} on E by some publicly known procedure (the procedure is known, but not P_{0} or m). They perform the following steps:
(1) Alice chooses a secret integer a with $\operatorname{gcd}(a, n)=1$ and Bob chooses a secret integer b with $\operatorname{gcd}(b, n)=1$.
(2) Alice computes $P_{1}=a P_{0}$ and sends P_{1} to Bob.
(3) Bob computes $P_{2}=b P_{1}$ and sends P_{2} to Alice.
(4) Alice computes $a_{1} \equiv a^{-1}(\bmod n)$ and computes $P_{3}=a_{1} P_{2}$. She sends P_{3} to Bob.
(5) Bob computes $b_{1} \equiv b^{-1}(\bmod n)$ and computes $P_{4}=b_{1} P_{3}$. It can be shown that $P_{4}=P_{0}$, so Bob has received the message m (that is, he can extract m from P_{0}).
(a) Suppose Eve knows how to compute discrete logs for elliptic curves and she listens to the communications between Alice and Bob. How can she determine the secret integers a and b ? (This also allows Eve to determine P_{0}, and therefore m, but don't show this.)
(b) Describe a classical version (that is, a non-elliptic curve version related to the classical discrete log problem) of the above protocol in which the message is now an integer m mod a large prime p.

