Solutions to Sample Exam 2

1. (a) Round 1: Peggy chooses r_{1} randomly, computes $h_{1} \equiv \alpha^{r_{1}}(\bmod p)$ and computes $h_{2} \equiv \beta h_{1}^{-1}(\bmod p)$. She sends h_{1}, h_{2} to Victor. When Victor asks for r_{1}, she sends it. Round 2: Peggy chooses r_{2} randomly, computes $h_{2} \equiv \alpha^{r_{2}}(\bmod p)$ and computes $h_{1} \equiv \beta h_{2}^{-1}(\bmod p)$. She sends h_{1}, h_{2} to Victor. When Victor asks for r_{2}, she sends it.
(b) Peggy will need to solve $\alpha^{r_{2}} \equiv h_{2}(\bmod p)$ for r_{2}. This is a discrete \log problem, which is hard.
2. (a) If there are n possible birthdays and two lists, each with around \sqrt{n} elements, then it is likely that some element from the first will match some element from the second. In part (a), Eve makes two lists: one is the hashes of 10^{4} of Alice's checks, the other is the hashes of the 10^{4} fraudulent checks. Since there are $n=2^{20} \approx 10^{6}$ hash values, and 10^{4} is much larger than $\sqrt{n} \approx 10^{3}$, there is almost certainly a match. Eve then takes the signature of the hash of Alice's check that matches the hash for a bad check, and uses Alice's signature on this fraudulent check.
(b) In this case, $n \approx 10^{60}$, so $\sqrt{n} \approx 10^{30}$, which is much larger than 10^{4}. Therefore it is unlikely that there is a match.
3. (a) $u_{2} \equiv \beta^{m} r^{r} \equiv \alpha^{a m} \alpha^{k r} \equiv \alpha^{s} \equiv u_{1}$.
(b) $a m \equiv s-k r(\bmod p-1)$. There are $\operatorname{gcd}(m, p-1)$ solutions a to this congruence. Try each one until $\beta \equiv \alpha^{a}(\bmod p)$ is satisfied.
(c) Eve must satisfy the verification congruence $\alpha^{s} \equiv \beta^{m} r^{r}(\bmod p)$. She has already chosen m and r. Therefore she must solve (for s) the discrete log problem $\alpha^{s} \equiv c(\bmod p)$, where $c=\beta^{m} r^{r}$ is known to Eve. This should be hard to do because discrete logs are hard. (Note that no mention of a and k is made in the verification congruence.)
4. The whole situation does not depend on the choice of the function f. Switch left and right and put $R_{3} L_{3}$ into the encryption machine. Usually, the keys would have to be taken in reverse order, but here the key is the same for each round. After three rounds, $R_{0} L_{0}$ comes out. The verification is identical to the one given at the bottom of page 99 in the book. Switch left and right to get the original plaintext $L_{0} R_{0}$.
5. (a) Eve knows P_{1} and $P_{2}=b P_{1}$. Eve solves a discrete log to find b. Similarly, Eve knows P_{2} and $P_{3}=a_{1} P_{2}$. Eve solves a discrete \log to find a_{1}. She then calculates $a \equiv a_{1}^{-1}(\bmod n)$ to get a.
(b) Alice and Bob publicly agree on a large prime p. Alice chooses a secret integer a with $\operatorname{gcd}(a, p-1)=1$ and Bob chooses a secret integer b with $\operatorname{gcd}(b, p-1)=1$. Alice sends $m_{1} \equiv m^{a}(\bmod p)$ to Bob. Bob sends $m_{2} \equiv m_{1}^{b}$ to Alice. Alice computes $a_{1} \equiv a^{-1}(\bmod p-1)$ and sends $m_{3} \equiv m_{2}^{a_{1}}(\bmod p)$ to Bob. Bob computes $b_{1} \equiv b^{-1}(\bmod p-1)$ and computes $m_{4} \equiv m_{3}^{b_{1}}(\bmod p)$. It can be shown that $m_{4} \equiv m \bmod p$.
