MATH/CMSC 456 EXAM 2 ANSWERS May 7, 2003

1. (a) $11 \equiv 44 \cdot 2^{-2} \equiv 3^6 \cdot 3^{-20} \equiv 3^{-14}$. Since $3^{136} \equiv 1$, we have $11 \equiv 3^{-14+136} \equiv 3^{122}$. Therefore, x = 122.

(b) The line through (0,1) and (3,0) has slope $-1/3 \equiv 2 \pmod{7}$. The line is $y \equiv 2x+1$. Intersecting with E yields $(2x+1)^2 \equiv x^3+1$, so $x^3-4x^2+\cdots \equiv 0$. The sum of the roots is 4 (= negative the coefficient of x^2), so 4 = 0+3+x. Therefore, x = 1. The y-coordinate of the intersection is y = 2x + 1 = 3. Reflect across the x-axis to get the answer (1, -3), or (1, 4) (since $-3 \equiv 4 \pmod{7}$). (c) Since $H(x+10^{100}) = H(x)$, it is easy to find collisions.

2. (a) If $\beta \alpha^{-i} \equiv \alpha^j$, then $\beta \equiv \alpha^{i+j}$, so $x \equiv i+j \pmod{p-1}$.

(b) If there are N birthdays, the birthday attack needs approximately \sqrt{N} on each list to get a 50% chance of a match. Therefore, M should be approximately 10^{15} . (c) Make two lists. One is B - iA for \sqrt{N} random values of *i*. The other is jA for \sqrt{N} random values of *j*. Look for a match. A match yields B = (i + j)A.

3. (a)

$$v_1 \equiv \alpha (m\alpha^{-k})^s (\alpha^a)^{-f(r)} \equiv m^s \alpha^{1-ks-af(r)} \equiv m^s \alpha^0 \equiv v_2.$$

(b) One way: Eve follows steps (1) through (4). Since a is multiplied by f(r) = 0, she never needs a, which is the only secret Alice has.

Another way: Choose s = 1 and $r \equiv \alpha^{-1}m$.

4. (a) Peggy chooses random integers r_1 and r_3 and computes $m_1 \equiv \alpha^{r_1}$ and $m_3 \equiv \alpha^{r_3}$. She lets $m_3 \equiv \beta m_1^{-1} m_3^{-1}$. Since Victor does not ask for r_2 , Peggy does not need to know it.

(b) If Peggy does not know x, then she cannot know all of r_1, r_2, r_3 , since $r_1 + r_2 + r_3 \equiv x \pmod{p-1}$. Therefore, there is at least one of the r_i 's that Peggy does not know. The probability is 2/3 that Victor will ask for that value in any given round. Therefore, after several rounds, it is very likely that he will discover that Peggy does not know x.

5. Note that $L_2 = R_1$ and $R_2 = L_1 \oplus f(K, R_1)$. Switch L_2 and R_2 to get R_2L_2 . Now put these into the encryption machine. After one round, we obtain:

On the left: $L_2 = R_1$.

On the right: $R_2 \oplus f(K, L_2) = (L_1 \oplus f(K, R_1)) \oplus f(K, R_1) = L_1.$

Therefore, one round yields R_1L_1 .

The same reasoning shows that the second round yields R_0L_0 . Now switch left and right to obtain L_0R_0 .