1. (a) Given any x < 123456, we have H(x) = x, so H is not preimage resistant. Also, H(123457) = H(1), so H is not strongly collision free.

(b) The line through (1,3) and (-2,0) has equation $y \equiv x+2$. Intersecting with the curve yields $(x+2)^2 \equiv x^3+8$, so $0 \equiv x^3 - x^2 + \cdots$. The sum of the roots is $1 + (-2) + x \equiv 1$, so $x \equiv 2$. Then $y \equiv x+2 \equiv 4$. Reflecting yields the answer (2, -4), or (2, 7).

- 2. The remaining steps are:
 - 4. Victor randomly chooses i = 1 or i = 2 and asks Peggy for r_i .
 - 5. Peggy sends r_i .
 - 6. Victor checks that $r_i^e \equiv x_i$.
 - 7. They repeat steps 1 through 6 seven times.

If Peggy does not know m, the probability is 1/2 that Peggy can correctly supply r_i in a given round. Therefore, the probability is $(1/2)^k$ that Peggy can succeed for k rounds if she doesn't know m. When k = 7, this probability is less than .01, so if Peggy succeeds for seven rounds then the probability is more than 99% that she knows m.

3. Collisions can be found by a birthday attack. Make a list of H(x) for around 2^{30} (maybe a little more) random values of x. Since the length of the list is approximately $\sqrt{2^{60}}$, there is a good chance that two hash values are the same. This yields a collision.

4. Bob switches C_0 and C_1 , so he inputs C_1 , C_0 into the machine. it outputs C_0 as the left half and $C_1 \oplus f(C_0)$ as the right half. But $C_0 = R$ and $C_1 \oplus f(C_0) = (L \oplus f(R)) \oplus f(R) = L$. Therefore, the output is RL. Switch the two halves to get LR.

5. (a) Look for a match between the two lists. If there is, then $\beta \equiv \alpha^{j+kN}$, so x = j + kN solves the discrete log problem. This always works because we can write $x = x_0 + x_1N$. When $j = x_0$ and $k = x_1$, we have a match. This means that there is a match between the two lists.

(b) Make two lists:

- 1. jA for $0 \le j < N$
- 2. B kNA for $0 \le k < N$. Look for a match between the two lists. When there is a match, we have B = (j + kN)A.

6. (a) We need m so that $\alpha^m \equiv \beta^r(r)^s \pmod{p}$. This simplifies to $\alpha^m \equiv \beta^r(\alpha\beta)^{-r} \equiv \alpha^{-r} \pmod{p}$, so we can take $m \equiv -r \pmod{p-1}$. (b) We need $H(m) \equiv -\alpha\beta$. But H(m) is assumed to be preimage resistant, so it is hard to find m satisfying this property.