MATH/CMSC 456 (Washington) Exam $2 \quad$ May 2, 2006

1. (a) Given any $x<123456$, we have $H(x)=x$, so H is not preimage resistant. Also, $H(123457)=H(1)$, so H is not strongly collision free.
(b) The line through $(1,3)$ and $(-2,0)$ has equation $y \equiv x+2$. Intersecting with the curve yields $(x+2)^{2} \equiv x^{3}+8$, so $0 \equiv x^{3}-x^{2}+\cdots$. The sum of the roots is $1+(-2)+x \equiv 1$, so $x \equiv 2$. Then $y \equiv x+2 \equiv 4$. Reflecting yields the answer $(2,-4)$, or $(2,7)$.
2. The remaining steps are:
3. Victor randomly chooses $i=1$ or $i=2$ and asks Peggy for r_{i}.
4. Peggy sends r_{i}.
5. Victor checks that $r_{i}^{e} \equiv x_{i}$.
6. They repeat steps 1 through 6 seven times.

If Peggy does not know m, the probability is $1 / 2$ that Peggy can correctly supply r_{i} in a given round. Therefore, the probability is $(1 / 2)^{k}$ that Peggy can succeed for k rounds if she doesn't know m. When $k=7$, this probability is less than .01, so if Peggy succeeds for seven rounds then the probability is more than 99% that she knows m.
3. Collisions can be found by a birthday attack. Make a list of $H(x)$ for around 2^{30} (maybe a little more) random values of x. Since the length of the list is approximately $\sqrt{2^{60}}$, there is a good chance that two hash values are the same. This yields a collision.
4. Bob switches C_{0} and C_{1}, so he inputs C_{1}, C_{0} into the machine. it outputs C_{0} as the left half and $C_{1} \oplus f\left(C_{0}\right)$ as the right half. But $C_{0}=R$ and $C_{1} \oplus f\left(C_{0}\right)=$ $(L \oplus f(R)) \oplus f(R)=L$. Therefore, the output is $R L$. Switch the two halves to get $L R$.
5. (a) Look for a match between the two lists. If there is, then $\beta \equiv \alpha^{j+k N}$, so $x=j+k N$ solves the discrete log problem. This always works because we can write $x=x_{0}+x_{1} N$. When $j=x_{0}$ and $k=x_{1}$, we have a match. This means that there is a match between the two lists.
(b) Make two lists:

1. $j A$ for $0 \leq j<N$
2. $B-k N A$ for $0 \leq k<N$. Look for a match between the two lists. When there is a match, we have $B=(j+k N) A$.
3. (a) We need m so that $\alpha^{m} \equiv \beta^{r}(r)^{s} \quad(\bmod p)$. This simplifies to $\alpha^{m} \equiv$ $\beta^{r}(\alpha \beta)^{-r} \equiv \alpha^{-r} \quad(\bmod p)$, so we can take $m \equiv-r \quad(\bmod p-1)$.
(b) We need $H(m) \equiv-\alpha \beta$. But $H(m)$ is assumed to be preimage resistant, so it is hard to find m satisfying this property.
