1. (20 points $=5+5+10)$ (a) The powers of $3 \bmod 7$ are $1,3,2,6,4,5$. This gives all nonzero congruence classes.
(b) The powers of $2 \bmod 7$ are 1, 2, 4. This misses 3, 5, 6. Therefore, 2 is not a primitive root for 7 .
(c) Divide $3^{6} \equiv 2^{2} \cdot 11(\bmod 137)$ by the square of $3^{10} \equiv 2(\bmod 137)$. This yields $11 \equiv 3^{6-20} \equiv 3^{-14}(\bmod 137)$. (Therefore, any $x \equiv-14(\bmod 136)$ works.)
2. $(20$ points $=15+5)$ (a) Step 4: Victor checks that $h_{1} h_{2} h_{3} \equiv \beta(\bmod p)$. Step 5: Victor checks that $h_{i} \equiv \alpha^{r_{i}}$ and $h_{j} \equiv \alpha^{r_{j}}(\bmod p)$. Step 6: They do Steps 1 through 5 at least 5 times (Since there is $1 / 3$ probability that Peggy guesses which r is not asked for, Peggy has $1 / 3$ chance of being lucky at any step, and $\left.(1 / 3)^{5}<.01\right)$.
(b) Choose r_{1} and r_{2} randomly and then let $r_{3} \equiv a-r_{1}-r_{2}(\bmod p-1)$.
3. (20 points) Suppose we are given y and want to find x such that $H(x)=y$. Probably the only way to try to do this is first to find z such that $H_{2}(z)=y$ and then find x such that $H_{1}(x)=z$. Since H_{2} is strong, the first step should be impossible, and the second step is also probably impossible. Brute force would take around 2^{60} computations, so cannot be done. Therefore, H is probably preimage resistant.

To find collisions, make a list of around 2^{30} values of H_{1}. The birthday paradox says that we should expect a collision: $H_{1}\left(x_{1}\right)=H_{2}\left(x_{2}\right)$. Then $H\left(x_{1}\right)=H_{2}\left(H_{1}\left(x_{1}\right)\right)=$ $H_{2}\left(H_{1}\left(x_{2}\right)\right)=H\left(x_{2}\right)$, so we have a collision for H.
4. (20 points $=6+7+7$) (a) If $k=1$, then Eve recognizes this because $r=\alpha$. Eve then knows that $s \equiv m-a r$, so $a r \equiv m-s(\bmod p-1)$. This can be solved for a, where there might be more than one solution. Trying these possible values of a until $\alpha^{a} \equiv \beta(\bmod p)$ should yield the correct value of a and therefore break the system.
(b) We need $\beta^{r}(\alpha \beta)^{s} \equiv \alpha^{-r}$. It is easy to see that $s \equiv-r(\bmod p-1)$ works.
(c) $r \equiv \alpha \beta(\bmod p)$. To work in the exponent, we need a congruence $\bmod p-1$.
(d) We need to find m with $H(m) \equiv-r(\bmod p-1)$. Since H should be preimage resistant, this should be hard to do.
5. $(20$ points $=10+10)(\mathrm{a})$

$$
\left(1-\frac{1}{12}\right)\left(1-\frac{2}{12}\right)\left(1-\frac{3}{12}\right)\left(1-\frac{4}{12}\right) .
$$

The approximation is $e^{-25 / 24}$.
(b) Preimage resistant since it is hard to find square roots $\bmod n$. It is easy to find Collisions: $H(n-x)=H(x)=H(x+n)=\cdots$.

