MATH/CMSC 456 (Washington) Name:

Exam 2 May 5, 2015

1. (15 points $=5+5+5)$ You are given that 14 is a primitive root for the prime $p=30000001$. Let $b \equiv 14^{9000000}(\bmod p)$. (The exponent is $3(p-1) / 10$.)
(a) Explain why $b^{10} \equiv 1(\bmod p)$.
(b) Explain why $b \not \equiv 1(\bmod p)$.
(c) Let p be a 300-digit prime. Define a hash function

$$
H(x)=2^{x} \quad(\bmod p) .
$$

Although H can be computed quickly, it is not fast enough to be a good hash function. Give one more property of cryptographic hash functions that H does not satisfy and give one property that H satisfies. You must justify your answers.
2. (20 points $=10+10$) (a) Alice wants to encrypt her messages securely, but she can afford only an encryption machine that uses a 25 -bit key. To increase security, she chooses 4 keys $K_{1}, K_{2}, K_{3}, K_{4}$ and encrypts four times:

$$
c=E_{K_{1}}\left(E_{K_{2}}\left(E_{K_{3}}\left(E_{K_{4}}(m)\right)\right)\right) .
$$

Eve finds several plaintext-ciphertext pairs (m, c) encrypted with this set of keys. Describe how she can find (with high probability) the keys $K_{1}, K_{2}, K_{3}, K_{4}$. (For this problem, assume that Eve can do at most 2^{60} computations, so she cannot try all 2^{100} combinations of keys). (Note: If you use only one of the plaintext-ciphertext pairs in your solution, you probably have not done enough to determine the keys.)
(b) Bud gets a budget 2-round Feistel system. It uses a 32 -bit L, a 32 -bit R, a 32 -bit key K, and the function $f(R, K)=R \oplus K$, with the same key for each round. Moreover, to avoid transmission errors, he always uses a 32-bit message M and lets $L_{0}=R_{0}=M$. Eve does

not know Bud's key but she obtains the ciphertext for one of Bud's encryptions. Describe how Eve can obtain the plaintext M and the key K.
3. (30 points $=5++5+5+5+5$) Alice wants to sign a document m. She uses the following variant of the ElGamal Signature scheme. She chooses a prime p and a primitive root g. Then she chooses a random integer a and computes $h \equiv g^{a}(\bmod p)$. To sign m, she chooses a random integer k, computes $r \equiv g^{k}(\bmod p)$, and $s \equiv a r+k m(\bmod X)$, where X is specified below. The signature is valid if $g^{s} \equiv h^{r} r^{m}(\bmod p)$.
(a) What is a suitable value of X ? Explain why.
(b) Show that if Alice signs correctly then the signature is valid.
(c) Suppose Eve tries to forge Alice's signature on a document m^{\prime} by choosing a random k, computing $r \equiv g^{k}(\bmod p)$, and then finding s. Explain why Eve probably will not succeed. (Hint: The answer is not that Eve does not know a. Maybe she has a method that avoids knowledge of a.)
(d) Suppose Eve chooses $r \equiv h g(\bmod p)$ with $0<r<p$ and then sets $s=m=p-1-r$. Show that (m, r, s) is a valid message.
(e) Suppose H is a cryptographic hash function, and Alice signs the hash of m. Give the equations Alice uses to generate a valid signed message (m, r, s) and those that Bob uses to verify the signature.
(f) When Alice signs with a cryptographic hash function, as in part (e), why is it hard for Eve to generate a valid signed message by the method of part (d)?
4. (20 points $=10+10)$ (a) Let E be the elliptic curve $y^{2} \equiv x^{3}+x+1(\bmod 13)$. Evaluate $(4,2)+(5,12)$ on E.
(b) Let $p=999983$, which is prime. The elliptic curve $E: \quad y^{2} \equiv x^{3}+1(\bmod p)$, has $N=999984$ points. Suppose you are given points P and Q on E and are told that there is an integer k such that $Q=k P$. Describe a birthday attack that is expected to find k. (You should say approximately how long you will make your lists.)
5. (15 points $=5+5+5$) Let n and e be an RSA modulus and encryption exponent, and suppose m is a message encrypted as $c \equiv m^{e}(\bmod n)$. Victor and Peggy know n, e, c. Peggy wants to use a zero-knowledge protocol to convince Victor that she knows m, without revealing any information about m. She writes $m \equiv r_{1} r_{2}(\bmod n)$ and she lets $c_{1} \equiv r_{1}^{e}$ $(\bmod n)$ and $c_{2} \equiv r_{2}^{e}(\bmod n)$. She sends c_{1} and c_{2} to Victor, who checks that $c_{1} c_{2} \equiv c$ $(\bmod n)$. Victor then chooses $i=1$ or 2 and asks for r_{i}, which Peggy sends.
(a) Give the remaining steps in the protocol.
(b) Suppose Peggy does not know m but knows that Victor is going to ask for r_{2}. What should she do?
(c) If Peggy knows m, what is a good procedure for choosing r_{1} and r_{2} ? (choosing r_{1} and r_{2} randomly until their product is $m \bmod n$ is not a good method)

