1. (15 points $=5+5+5$) (a) $b^{10} \equiv\left(14^{p-1}\right)^{3} \equiv 1^{3} \equiv 1(\bmod p)$ by Fermat.
(b) Since 14 is a primitive root, the smallest positive exponent that yields 1 is $p-1$, and $3(p-1) / 10<p-1$.
(c) $H(x+p-1)=H(x)$, so it is easy to find collisions, so H is not collision-free. Given y, solving $H(x)=y$ is a discrete log problem, which is hard. So H is preimage resistant.
2. (20 points $=10+10$) (a) Eve chooses a pair (m, c) and makes two lists:
I. $D_{L_{2}}\left(D_{L_{1}}(c)\right)$ for all keys L_{1}, L_{2}; II. $E_{L_{3}}\left(E_{L_{4}}(m)\right)$ for all keys L_{3}, L_{4}.

She records all matches. For each $\left(L_{1}, L_{2}, L_{3}, L_{4}\right)$ that gives a match, try with another (m, c). If more than one set survives this round, try with another (m, c). This probably gives the correct keys.
(b) The first round yields $L_{1}=M$ and $R_{1}=M \oplus(M \oplus K)=K$. The second round yields $L_{2}=K$ and $R_{2}=M \oplus(K \oplus K)=M$. Therefore, the left half of the ciphertext is the key and the right half is M. Very convenient for Eve!
3. (30 points $=5+5+5+5+5+5$) (a) Since s goes in the exponent, it should be defined by a congruence $\bmod p-1$, so $X=p-1$.
(b) $h^{r} r^{m} \equiv\left(g^{a}\right)^{r}\left(g^{k}\right)^{m} \equiv g^{a r+k m} \equiv g^{s}$.
(c) Eve needs to find s such that g^{s} is congruent to a known quantity mod p. This is a discrete \log problem, and therefore probably hard.
(d) $h^{r} r^{m} \equiv h^{r} h^{m} g^{m} \equiv h^{r+m}=h^{p-1} g^{m} \equiv g^{m} \equiv g^{s}$.
(e) $r \equiv g^{k}$ and $s \equiv a r+k H(m)(\bmod p-1)$. To verify: $g^{s} \equiv h^{r} r^{H(m)}(\bmod p)$.
(f) The method of part (c) requires $H(m)=p-1-r$. Since H is preimage resistant, it is hard to find such an m.
4. (20 points $=10+10$) (a) The line through $(4,2)$ and $(5,12)$ is $y=10 x-38$ (or $10 x+1$ mod 13). Intersect: $(10 x+1)^{2} \equiv x^{3}+x+7$, so $0 \equiv x^{3}-100 x^{2}+\cdots$. The sum of the roots is $100 \equiv 4+5+x$, so $x \equiv 0$. The y-coordinate is $10 x+1 \equiv 1$. Reflect to get $(0,-1)$, or $(0,12)$.
(b) Make two lists of length at least $\sqrt{N} \approx 1000$:
I. $i P$ for random values of i; II. $Q-j P$ for random values of j.

You expect a match, which yields $Q=(i+j) P$.
5. (15 points $=5+5+5$) (a) Victor checks that $c_{i} \equiv r_{i}^{e}$. They repeat this procedure several times (with a new r_{1} each time).
(b) Choose r_{2} and compute $c_{2} \equiv r_{2}^{e}(\bmod n)$. Then let $c_{1} \equiv c c_{2}^{-1}(\bmod n)$.
(c) Choose r_{1} randomly and then let $r_{2} \equiv m r_{1}^{-1}(\bmod n)$.

