MATH/CMSC 456 (Washington) Final Exam Solutions May 14, 2007

1. (14 points $=7+7)$ (a) Solve $y \equiv 9 x+1(\bmod 26)$ for x to get $x \equiv 3(y-1)$ $(\bmod 26)$. The ciphertext $19,1,16$ becomes $2,0,19$, which is cat.
(b) Use $n=1,2,3$ to get the equations

$$
1 \equiv 0+0+c_{2}, \quad 1 \equiv 0+c_{1}+c_{2}, \quad 0 \equiv c_{0}+c_{1}+c_{2} .
$$

These yield $c_{2} \equiv 1, c_{1} \equiv 0, c_{0} \equiv 1$. The recurrence is $x_{n+3} \equiv x_{n}+x_{n+2}$. The next four elements of the sequence are $1,0,0.1$.
2. (11 points $=7+4$) (a) Take any random number, for example 3 , for the slope. Use the line $y \equiv 5+3 x(\bmod 7)$. Give A the point $(1,1)$, give B the point $(2,4)$, give C the point $(3,0)$, and give D the point $(4,3)$.
(b) With only one share, all 7 secrets are still possible.
3. (20 points $=12+8$) (a) (1) Vigenère: yes; (2) Hill cipher: yes; (3) RSA (with a 300-digit n): no; (4) DES: no
(b) $23154^{2} \equiv 1234^{4} \equiv 1(\bmod n)$ but $23154 \not \equiv \pm 1(\bmod n)$. Therefore, $\operatorname{gcd}(23154-$ $1, n)$ gives a factor of n. (If you're wondering, or if you're not, $n=137 \cdot 421$.)
4. (14 points: $7+7)(\mathrm{a}) x \equiv y(\bmod p-1)$ means $x=y+(p-1) k$ for some k. Therefore, $m^{x}=m^{y}\left(m^{p-1}\right)^{k} \equiv m^{y}(1)^{k} \equiv m^{y}(\bmod p)$, by Fermat's theorem.
(b) Eve knows e and p, so she finds d with $d e \equiv 1(\bmod p-1)$. Then $c^{d} \equiv m^{e d} \equiv m$ $(\bmod p)$, so Eve obtains p.
5. (10 points: $7+3) v_{1} \equiv \beta^{f(r)} r^{s} \equiv \alpha^{a f(r)} \alpha^{k s} \equiv \alpha^{a f(r)+m-a f(r)} \equiv \alpha^{m} \equiv v_{2}$ $(\bmod p)$.
(b) Eve takes $k=1, r=\alpha, s=m_{1}$.
6. (11 points $=7+4$) (a) $s^{e} \equiv k^{-e} s_{1}^{e} \equiv k^{-e} m_{1}^{e d} \equiv k^{-e} m_{1} \equiv m(\bmod n)$.
(b) $\operatorname{gcd}(k, n)=1$ is used because we compute $k^{-1}(\bmod n)$.
7. (10 points) The remaining steps are
(3) Peggy sends R_{1} and R_{2} to Victor.
(4) Victor checks that $R_{1}+R_{2}=B$.
(5) Victor asks for r_{1} or r_{2}. Call it r_{i}.
(6) Peggy sends r_{i} to Victor.
(7) Victor checks that $r_{i} A=R_{i}$ for that i.
(8) They repeat all the above steps at least 9 more times (for a total of at least 10).
8. (10 points) Eve makes a list of the hash values of each of the 2^{20} good contracts and another list of the hash values of the 2^{20} bad contracts. Since there are 2^{30} possible hash values, 2^{20} is much larger than $\sqrt{2^{30}}=2^{15}$, there should be a match. This means that Alice's signature on a good contract is also valid as a signature of some bad document.

