MATH/CMSC 456 (Washington) Final Exam Solutions May 14, 2007

1. (14 points = 7+7) (a) Solve $y \equiv 9x + 1 \pmod{26}$ for x to get $x \equiv 3(y-1) \pmod{26}$. The ciphertext 19, 1, 16 becomes 2, 0, 19, which is *cat*. (b) Use n = 1, 2, 3 to get the equations

$$1 \equiv 0 + 0 + c_2, \quad 1 \equiv 0 + c_1 + c_2, \quad 0 \equiv c_0 + c_1 + c_2.$$

These yield $c_2 \equiv 1$, $c_1 \equiv 0$, $c_0 \equiv 1$. The recurrence is $x_{n+3} \equiv x_n + x_{n+2}$. The next four elements of the sequence are 1, 0, 0. 1.

2. (11 points = 7+4) (a) Take any random number, for example 3, for the slope. Use the line $y \equiv 5 + 3x \pmod{7}$. Give A the point (1, 1), give B the point (2, 4), give C the point (3, 0), and give D the point (4, 3).

(b) With only one share, all 7 secrets are still possible.

3. (20 points = 12+8) (a) (1) Vigenère: yes; (2) Hill cipher: yes; (3) RSA (with a 300-digit n): no; (4) DES: no

(b) $23154^2 \equiv 1234^4 \equiv 1 \pmod{n}$ but $23154 \not\equiv \pm 1 \pmod{n}$. Therefore, $\gcd(23154 - 1, n)$ gives a factor of n. (If you're wondering, or if you're not, $n = 137 \cdot 421$.)

4. (14 points: 7+7) (a) $x \equiv y \pmod{p-1}$ means x = y + (p-1)k for some k. Therefore, $m^x = m^y (m^{p-1})^k \equiv m^y (1)^k \equiv m^y \pmod{p}$, by Fermat's theorem. (b) Eve knows e and p, so she finds d with $de \equiv 1 \pmod{p-1}$. Then $c^d \equiv m^{ed} \equiv m \pmod{p}$, so Eve obtains p.

5. (10 points: 7+3) $v_1 \equiv \beta^{f(r)} r^s \equiv \alpha^{af(r)} \alpha^{ks} \equiv \alpha^{af(r)+m-af(r)} \equiv \alpha^m \equiv v_2 \pmod{p}$.

(b) Eve takes $k = 1, r = \alpha, s = m_1$.

6. (11 points = 7+4) (a) $s^e \equiv k^{-e}s_1^e \equiv k^{-e}m_1^{ed} \equiv k^{-e}m_1 \equiv m \pmod{n}$. (b) gcd(k, n) = 1 is used because we compute $k^{-1} \pmod{n}$.

7. (10 points) The remaining steps are

- (3) Peggy sends R_1 and R_2 to Victor.
- (4) Victor checks that $R_1 + R_2 = B$.
- (5) Victor asks for r_1 or r_2 . Call it r_i .
- (6) Peggy sends r_i to Victor.
- (7) Victor checks that $r_i A = R_i$ for that *i*.
- (8) They repeat all the above steps at least 9 more times (for a total of at least 10).

8. (10 points) Eve makes a list of the hash values of each of the 2^{20} good contracts and another list of the hash values of the 2^{20} bad contracts. Since there are 2^{30} possible hash values, 2^{20} is much larger than $\sqrt{2^{30}} = 2^{15}$, there should be a match. This means that Alice's signature on a good contract is also valid as a signature of some bad document.