MATH/CMSC 456 (Washington) Final Exam Solutions May 14,

 20091. (16 points $=8+8$) (a) First encrypt $(x, y)=(0,0)$. This yields (e, f). Then encrypt $(1,0)$ and subtract (e, f) from the result. This yields (a, b). Finally, encrypt $(0,1)$ and subtract (e, f) from the result to get (c, d).
(b) Take the product to get $(729 \cdot 42912)^{2} \equiv 2 \cdot 18 \equiv 6^{2}$. Then compute $\operatorname{gcd}(729 \cdot$ $42912-6, n)$ to get a nontrivial factor of n.
2. (12 points $=6+6$) (a) $m \equiv c^{d}$, so $m^{14} \equiv\left(c^{14}\right)^{d} \equiv 1^{d} \equiv 1$.
(b) Multiply (a) by m to get $m^{15} \equiv m$. This means that $c^{5} \equiv\left(m^{3}\right)^{5} \equiv m$. So $f=5$ works.
3. (12 points $=6+6$) (a) If n is prime then $k^{2} \equiv 2^{n-1} \equiv 1$ by Fermat. Therefore, if $k^{2} \not \equiv 1$ then n is not prime.
(b) We have $k^{2} \equiv 1^{2}$ but $k \not \equiv \pm 1$. Therefore, $\operatorname{gcd}(k-1, n)$ is a nontrivial factor of n.
4. (8 points) First, use RSA (or some public key method) to send a key. Or use Diffie-Hellman to establish a key. Then use DES or AES with this key to transmit the gigabytes of data. Alternatively, tell them to use a shift cipher. Then break the system, steal the data and the money, and move to Tahiti.
5. (18 points $=6+6+6$) (a) $u_{2} \equiv\left(\alpha^{a}\right)^{s}\left(\alpha^{k}\right)^{r} \equiv \alpha^{a s+k r} \equiv \alpha^{h(m)} \equiv u_{1}$.
(b) If $k=a$ then $r=\beta$, so Eve can notice this. From equation (3), $s \equiv a^{-1} h(m)-r$ when $k=a$, so $a^{-1} h(m) \equiv s+r(\bmod p-1)$. There are $d=\operatorname{gcd}(h(m), p-1)$ solutions a^{-1} to this congruence. Test each potential value of a in the congruence $\beta \equiv \alpha^{a}(\bmod p)$. This yields the correct value of a.
(c) Since $h\left(m_{0}+100\right) \equiv 2^{m_{0}} 2^{100} \equiv 2^{m_{0}} \equiv h\left(m_{0}\right)(\bmod 101)$, we find that $\left(m_{0}+\right.$ $\left.100, r_{0}, s_{0}\right)$ is a valid signed message.
6. (14 points $=8+6$) (a) For example, let the polynomial be $f(x)=5+3 x+x^{2}$ $(\bmod 11)$. Since $f(1)=9$, give $(1,9)$ to A. Give $(2,4)$ to B. Give $(3,1)$ to C. Give $(4,0)$ to D .
(b) There are 11 choices for the secret.
7. (8 points) There are 2^{30} "birthdays." Eve hashes each of the 2^{20} fraudulent contracts. Eve now has two lists of hash values, each list of length much longer than $\sqrt{2^{30}}$. So there should be a match between the two lists. This means that there is a hash of a legitimate contract that matches the hash of a fraudulent contract. Alice's signature on the legitimate contract is therefore also a signature for this fraudulent contract.
8. (12 points: $6+6$) (a) There are 10^{20} "birthdays," so N should be around $\sqrt{10^{20}}=$ 10^{10}.
(b) p is a prime around 10^{20}. There are numbers α and β such that $\beta \equiv \alpha^{k}(\bmod p)$ for some k. Eve makes two lists: The first is α^{j} for \sqrt{p} random j. The second is $\beta \alpha^{-\ell}$ for \sqrt{p} random ℓ. She looks for a match.
