1. (20 points $=10+10$) (a) Let $a x+b$ be the encryption function. Then $h=7$ encrypts to $N=13$, so $7 a+b \equiv 13(\bmod 26)$. Also, $a=0$ encrypts to $O=14$, so $b=14$. This yields $7 a+14 \equiv 13$, so $7 a \equiv-1$. Therefore, $a=11$. The encryption function is $11 x+14$.
(b) Displacement by 1 gives 2 matches, by 2 gives 6 matches (8 if we wrap around), and by 3 gives 2 matches. Therefore, the key length is probably 2 . The 1st, 3rd, 5 th, 7th, 9th letters are $B B B A B$. Since b is the most common letter in the language, there is probably no shift. The 2nd, 4th, 6th, 8th, 10 th letters are $A A A A A$. These are probably shifted by 1 . The key is $a b$ (or 0,1). The plaintext is bbbbbbabbb.
2. (30 points $=10+10+10)$ (a) Eve needs $e d \equiv 1(\bmod p-1)$, since Fermat's theorem replaces Euler's theorem here. This means that she needs to solve $361 d \equiv 1$ $(\bmod 1093)$. The extended Euclidean algorithm yields $(-36)(1093)+(109)(361)=1$, which means $109 \times 361 \equiv 1(\bmod 1093)$. Therefore, $d=109$ works.
(b) Use the Chinese Remainder Theorem to find x satisfying $x \equiv 7(\bmod p)$ and $x \equiv-7(\bmod q)$.
(c) Compute $\operatorname{gcd}(x-7, n)$. This will be p or q.
3. $(25$ points $=9+8+8)(\mathbf{a}) s^{e} \equiv H(m)^{e d} \equiv H(m)(\bmod n)$, since this is RSA encryption/decryption.
(b) Eve needs to find s satisfying $s^{e} \equiv H(m)(\bmod n)$. This is the same as decrypting the RSA "ciphertext" $H(m)$, which is hard to do.
(c) Eve needs to find m satisfying $H(m) \equiv s^{e}(\bmod n)$. Since H is preimage resistant, this is hard to do.
4. (15 points $=5+10$) (a) Eve switches left and right to get $R_{16} L_{16}$. She puts this into the machine. In a Feistel system, using the keys in reverse order is needed, but here the keys are all the same. The output is $R_{0} L_{0}$. She switches left-right to get $L_{0} R_{0}$.
(b) Bob's method is weaker. If Eve has a plaintext/ciphertext pair (m, c), she can make two lists: $E_{K}\left(E_{K}(m)\right)$ for all possible K and $D_{L}\left(D_{L}(c)\right)$ for all possible L. The desired pair $\left(K_{1}, K_{2}\right)$ is among the pairs (L, K) that yield matches. Trying another pair (m, c) eliminates many of the pairs that yielded matches in the first round. A few more iterations should yield the key. There does not seem to be a way to do a meet-in-the-middle attack on Alice's method.
5. (10 points) The remaining steps:
6. Victor checks that $X_{1}+X_{2}=Q$.
7. Victor asks for an r_{i} and Peggy sends it.
8. Victor checks that $r_{i} P=X_{i}$.
9. They repeat 6 more times (since $(1 / 2)^{7}<.01$) with different r_{i} 's.
10. (20 points $=10+10$) (a) Eve makes around 2^{35} versions of each document by adding and removing spaces, commas, etc., and computes the hashes of these modified documents. She thus obtains two lists of length $\sqrt{2^{70}}=2^{35}$, one being hashes of good documents and the other being hashes of bad documents. She expects a match. She gets Bob to sign the hash of the good version, which is also the hash of a bad version. (b) H is preimage resistant: given y, solving $\alpha^{x} \equiv y(\bmod p)$ is a discrete \log problem,
which should be difficult. H is not strongly collision-free: $H(x)=H(x+p-1)$ for every x.
11. (20 points $=6+6+8)$ (a) Let $x=0,1,2,3,4$ and solve for y. We get $(0,2),(0,3)$, $(1,2),(1,3),(2,0),(4,2),(4,3), \infty$.
(b) The slope of the line through the two points is $3 / 2 \equiv 4$. The line is $y=4(x-2)$. Intersecting with the curve, we get $(4 x-8)^{2}=x^{3}-x+4$, so $0=x^{3}-16 x^{2}+\cdots \equiv$ $x^{3}-x^{2}+\cdots$. The sum of the roots is $1 \equiv 2+4+x$, so $x \equiv 0$. Then $y=4(x-2) \equiv 2$. Reflect across the x-axis to get $(0,3)$.
(c) They first use RSA (Diffie-Hellman or ElGamal are also possible) to establish a key, which is then used in DES or AES to transmit the data.
