1. (15 points $=6+3+6$) (a) The inverse of $21 \bmod 26$ is 5 . Multiply by 5 to get $5 y \equiv 105 x+10 \equiv x+10(\bmod 26)$. This yields $x \equiv 5 y-10$. The decryption of $W=22$ is $5 \times 22-10=100 \equiv 22$, which is X. The decryption of $A=0$ is $-10 \equiv 16$, which is Q. So my plaintext is $X Q$.
(b) The determinant of the matrix is -2 and $\operatorname{gcd}(-2,26) \neq 1$, so the matrix is not invertible.
(c) Since $2554^{2} \equiv 3^{2700} \equiv 1(\bmod 2701)$ and $2554 \not \equiv \pm 1(\bmod 2701)$, we compute $\operatorname{gcd}(2554-1,2701)=37$, so $2701=37 \times 73$.
2. (15 points) Let P be the one-time pad. Double encrypting m yields $m \oplus P \oplus P=m$ since $p \oplus P=000 \ldots 0$. The key $N A N A N A$ alternates shifts of 13 and 0 . Doing this twice yields shifts of 26 and 0 . Since we are working mod 26 , the plaintext does not get encrypted. Finally, since $e^{2} \equiv 1(\bmod (p-1)(q-1))$, we must have $d=e$. Therefore, double encryption is the same as encrypting and then decrypting. The final result is therefore the unencrypted plaintext.
3. (15 points $=10+5$) (a) We have $c_{4} \equiv m^{e_{A} d_{A} e_{B} d_{B}} \equiv\left(m^{e_{A} d_{A}}\right)^{e_{B} d_{B}} \equiv m^{e_{A} d_{A}}$ $(\bmod n)$, since raising to the exponent $e_{B} d_{B}$ is RSA encryption and decryption for Bob. But $m^{e_{A} d_{A}} \equiv m(\bmod n)$ since this is RSA encryption and decryption for Alice. Therefore, $c_{4} \equiv m(\bmod n)$.
(b) Knowing e_{A} and d_{A} allows Eve to factor n, so then Eve solves $d_{B} e_{B} \equiv(\bmod (p-$ 1) $(q-1))$ for d_{A} for get d_{A}.
4. (10 points $=5+5$) (a) To find y, Nelson will need to find square roots $\bmod n$. This is equivalent to being able to factoring n.
(b) First choose the point $P=(x, y)$ and the coefficient A. Then let $B=y^{2}-x^{3}-A x$. 5. (15 points $=5=5+5$) (a) Eve needs to solve $s^{e} \equiv 123456789(\bmod n)$, which is the same as decrypting the RSA "ciphertext" 123456789 to get the "plaintext" s. This is (probably) hard to do.
(b) Eve computes $m \equiv 112090305^{e}(\bmod n)$. Then (m, s) satisfies the verification congruence.
(c) Eve needs to solve $g^{m} \equiv r^{s} h^{r}(\bmod p)$ for m. Since g is a primitive root, this always has a solution. It is a discrete \log problem, so it is (probably) hard.
5. (15 points $=5+5+5$) (a) Victor checks that $Y_{1}+Y_{2}=Q$.
(b) Victor checks that $r_{i} P=Y_{i}$.
(c) They repeat (1) through (6) ten times.
6. (15 points $=5+5+5$) (a) There are $N=3 \times 10^{147}$ "birthdays" and $r=10^{85}$ "people." Since r is much larger than \sqrt{N}, it is very likely that there is a match; that is, two particles should choose the same prime.
(b) h is fast. But $h(m)=m$, so it is not preimage resistant, and $h(m \oplus m \oplus m)=h(m)$, so it is not collision resistant.
(c) Eve makes 2^{30} versions of the petition and computes their hashes. She makes 2^{30} versions of the statement and computes their hashes. Since h has at most 2^{60} outputs and $2^{30}=\sqrt{2^{60}}$, we expect a match between the two lists of hashes: $H\left(m_{1}\right)=H\left(m_{2}\right)$, where m_{1} is a version of the petition and m_{2} is a version of the statement. Eve has Alice sign m_{1} by signing $H\left(m_{1}\right)$. This is also a signature for m_{2}.
