MATH/CMSC 456 (Washington) Final Exam Solutions
May 14, 2015
The exam is worth 140 points.

1. (15 points $=5+10)($ a) $\operatorname{gcd}(b, 26)=1$
(b) aaaaa $=00000$ yields the shifts a_{1}, \ldots, a_{5}. Then baaaa $=10000$ yields $b+a_{1}, \ldots$. Subtract a_{1} to get b.
2. (20 points $=5+5+5+5$) (a) The shift can be determined from the first ciphertext letter minus Y . Then check whether this shift applied to P or F yields the fourth letter of the ciphertext.
(b) Same solution as for the shift cipher.
(c) Encrypt the two messages and see which one yields the ciphertext.
(d) With a one-time pad, the ciphertext could come from either message, so there is no way to tell which one it is.
3. $(25$ points $=5+5+5+10)(\mathbf{a}) \operatorname{gcd}(k, p-1)=1$ because we need $k^{-1}(\bmod p-1)$.
(b) If $k_{1}=k_{2}$ then the values of r will be the same.
(c) We have $k s_{1}+a r \equiv m_{1}$ and $k s_{2}+a r \equiv m_{2}(\bmod p-1)$. Subtract to get $k\left(s_{1}-s_{2}\right) \equiv m_{1}-m_{2}$. Divide by $s_{1}-s_{2}$ to get k. Then $a r \equiv m_{1}-k s_{1}$. Divide by r to get a.
(d) By the Birthday Paradox, since $10^{7}>\sqrt{10^{12}}$, we expect two values of k to be equal. Eve sees this, as in part (b), and finds a by the method of part (c).
4. (20 points $=5+5+10$) (a) Use $n=\cdots ; \operatorname{PowerMod}(2, n-1, n)$. If this yields 1 , then n is probably prime. If this is not 1 then n must be composite by the Fermat test.
(b) There are more than 10^{97} primes of 100 digits. There is not enough time (and not enough electrons in the universe) to do this calculation.
(c) Compute $\operatorname{gcd}(7961-7,8051)=97$ (Basic Factorization Principle), and 8051/97 $=$ 83.
5. (10 points) 1. Peggy chooses random integers r_{1} and r_{2} and lets $r_{3}=k-r_{1}-r_{2}$. She computes

$$
X_{1}=r_{1} P, \quad X_{2}=r_{2} P, \quad X_{3}=r_{3} P
$$

and sends them to Victor.
2. Victor checks that $X_{1}+X_{2}+X_{3}=Q$.
3. Victor chooses two indices i, j (among 1,2,3).
4. Peggy sends r_{i} and r_{j}.
5. Victor checks that $X_{i}=r_{i} P$ and $X_{j}=r_{j} P$.
6. They repeat 4 more times.

In this version, if Peggy doesn't know k then she has only $1 / 3$ probability of succeeding in a round. For another version, Victor asks for only one index i in Step 3. Then Peggy has probability $2 / 3$. This means that 12 iterations are needed.
6. (20 points $=10+10)$ (a) The method $c=E_{K_{1}}\left(E_{K_{1}}\left(E_{K_{2}}(m)\right)\right.$) is weaker since the Meet-in-the-Middle attack can be used: Choose a pair (m, c). Make two lists:
I. $D_{K}\left(D_{K}(c)\right)$ for all keys K, \quad II. $E_{L}(m)$ for all keys L.

For each match between the lists, test the pair (K, L) on another pair (m, c). If more than one pair survives the second round, use a third pair (m, c), and so on.
(b) Collisions are easy to find: $H(x+p-1)=2^{x+p-1} \equiv 2^{x}=H(x)$ by Fermat.

Preimage resistant: given y, solving $2^{x} \equiv y(\bmod p)$ is a discrete \log problem, which is probably hard.
7. $(20$ points $=10+5+5)$ (a) Write $e d=1+k(p-1)(q-1) / 2$. Then

$$
s^{e} \equiv m^{e d} \equiv m^{1}\left(m^{(p-1)(q-1) / 2}\right)^{k} \equiv m^{1} 1^{k} \equiv m(\bmod n)
$$

(b) We have $s_{1} \equiv m_{1}^{d} \equiv k^{e d} m^{d}$. But $k^{e d} \equiv k(\bmod n)$ since this is just RSA encryption and decryption of k. Therefore, $s_{1} \equiv k m^{d}$. Bob divides by k to get $s \equiv k^{-1} s_{1} \equiv m^{d}$, which is a valid signature for m.
(c) Signing: $s \equiv H(m)^{d}(\bmod n)$. Verifying: $H(m) \equiv s^{e}(\bmod n)$.
8. (10 points $=5+5$) (a) Use RSA, or ElGamal, or Diffie-Hellman to establish a key. Then use 3 -DES or AES to send the data.
(b) If the hash of a corrupted message equals the hash of the correct message, there is a collision. If the hash function is collision free, this shouldn't happen.

