MATH/CMSC 456 (Washington) Final Exam Solutions Spring 2017

1. (10 points) The encryption function is $A x+B$. Choose $x=0$ to get B and $x=1$ to get $A+B$. Subtract B to get A.
2. (10 points) $n=1$ yields $1 \equiv c_{0} \cdot 0+c_{1} \cdot 1+2$, so $c_{1} \equiv-1$.
$n=2$ yields $0 \equiv c_{0} \cdot 1+c_{1} \cdot 1+2$, so $c_{1} \equiv-1$.
3. (10 points) The Basic Factorization Principle tells us that $\operatorname{gcd}(1208-1,2201)$ is a non-trivial factor of 2201. Use the Euclidean Algorithm:

$$
2201=1 \cdot 1207+994,1207=1 \cdot 994+213,994=4 \cdot 213+142,213=1 \cdot 142+71,142=2 \cdot 71+0 .
$$

The gcd is 71. The factorization is $2201=71 \times 31$.
4. (10 points) Eve makes two lists: (1) $E_{K}\left(m_{1}\right)$ for all 10^{10} keys K. (2) $c_{1} \oplus B$ for all 10^{10} binary strings B. She finds all pairs (K, B) that yield matches. She tests each such pair on the remaining $\left(m_{i}, c_{i}\right)$. It is very likely that only one key pair (K, B) survives.
5. (a) (5 points) The ciphertext will be 5 letters repeated 60 times.
(b) (5 points) There will be no matches for displacements of 1, 2, 3, 4, 6. There will be 300 matches for displacement of 5 .
6. (10 points) Since the first two letters of c are the same, and the first two letters of $H E L L O$ are different, $H E L L O$ cannot encrypt to c, so the probability is 0 . If there is perfect secrecy, the conditional probability must equal $\operatorname{Prob}(m=H E L L O)$, which it does not.
7. (10 points) There are $r=10^{5}$ "people" and $N=10^{8}$ "birthdays." The probability of a match is approximately $1-e^{-r^{2} / 2 N}=1-e^{-50} \approx 1$. It is therefore very likely that there is a match.
8. (a) (5 points) The first shift is by 0 or 1 . Therefore, the 4 th shift is by 0 or 1 . Since I unshifts by 0 or 1 to I or H, the message must be YOUHAVEPASSED.
(b) (5 points) Encrypt the two possibilities and see which one yields the ciphertext.
(c) (5 points) Add 100 random bits at the end of the message before encrypting.
9. (10 points) We need to solve $d e \equiv 1(\bmod (p-1)(q-1))$, which means $7 d \equiv 1(\bmod 192)$. Use the Extended Euclidean Algorithm to obtain $1=192(-2)+7(55)$. Therefore, $d=55$.
10. (a) (5 points) 4. Victor chooses $i=1$ or $i=2$ and asks Peggy for R_{i}, which she sends. 5. Victor checks that $2 R_{i}=H_{i}$.
(b) (5 points) 1. Peggy chooses random $r_{1} \bmod n$ and computes $r_{2} \equiv x / r_{1}(\bmod n)$.
2. Peggy computes $h_{1}=r_{1}^{2}$ and $h_{2}=r_{2}^{2} \bmod n$ and sends h_{1} and h_{2} to Victor.
3. Victor checks that $h_{1} h_{2} \equiv s(\bmod n)$.
4. Victor chooses $i=1$ or $i=2$ and asks for r_{i}, which Peggy sends.
5. Victor checks that $h_{i} \equiv r_{i}^{2}$.
6. They repeat several times.
11. (10 points) It is fast. It is not collision-free: $h(M\|M\| M)=h(M)$. It is not preimage resistant: $h(M)=M$.
12. (a) (10 points) $N=p-1$ since it deals with the exponents. Verification congruence:

$$
r^{r} \equiv g^{k r} \quad(\bmod p), \quad h^{m} g^{s} \equiv g^{m a} g^{k r-a m} \equiv g^{k r} \quad(\bmod p) .
$$

(b) (5 points) Eve needs to solve $5^{5} h^{-m} \equiv g^{s}(\bmod p)$ for s. This is a discrete log problem, so it's hard.
(c) (5 points) Signing congruences: $r \equiv g^{k}(\bmod p)$ and $s \equiv k r-a H(m)(\bmod p-1)$; Verification: $r^{r} \equiv$ $h^{H(m)} g^{s}(\bmod p)$.
13. (a) (7 points) H is collision free, so if H (answer) $=H(\pi)$, we expect that answer $=\pi$.
(b) (3 points) The hash function should give random-looking binary strings, so about half of the binary digits should agree with the correct hash value and half should not. Therefore, the average should be approximately 50%.
14. (5 points) HAVEAGOODSUMMER

MATH/CMSC 456 (Washington) Final Exam Solutions Spring 2017

1. (a) (5 points) The first shift is by 1 or 2 . Therefore, the 4 th shift is by 1 or 2 . Since J unshifts by 1 or 2 to I or H, the message must be YOUHAVEPASSED.
(b) (5 points) Encrypt the two possibilities and see which one yields the ciphertext.
(c) (5 points) Add 100 random bits at the end of the message before encrypting.
2. (10 points) The Basic Factorization Principle tells us that $\operatorname{gcd}(2256-1,2501)$ is a non-trivial factor of 2501. Use the Euclidean Algorithm:

$$
2501=1 \cdot 2255+246,2255=9 \cdot 246+41,246=6 \cdot 41+0 .
$$

The gcd is 41 . The factorization is $2501=61 \times 41$.
3. (10 points) The encryption function is $A x+B$. Choose $x=0$ to get B and $x=1$ to get $A+B$. Subtract B to get A.
4. (10 points) $n=1$ yields $2 \equiv c_{0} \cdot 1+c_{1} \cdot 0+1$, so $c_{1} \equiv 1$.
$n=2$ yields $0 \equiv c_{0} \cdot 0+c_{1} \cdot 2+1$, so $c_{1} \equiv 1$.
5. (a) (5 points) The ciphertext will be 4 letters repeated 100 times.
(b) (5 points) There will be no matches for displacements of $1,2,3,5,6$. There will be 400 matches for displacement of 4.
6. (a) (7 points) H is collision free, so if H (answer) $=H(\pi)$, we expect that answer $=\pi$.
(b) (3 points) The hash function should give random-looking binary strings, so about half of the binary digits should agree with the correct hash value and half should not. Therefore, the average should be approximately 50%.
7. (10 points) Since the first two letters of c are the same, and the first two letters of $A F F I N E$ are different, AFFINE cannot encrypt to c, so the probability is 0 . If there is perfect secrecy, the conditional probability must equal $\operatorname{Prob}(m=A F F I N E)$, which it does not.
8. (10 points) There are $r=10^{6}$ "people" and $N=10^{9}$ "birthdays." The probability of a match is approximately $1-e^{-r^{2} / 2 N}=1-e^{-500} \approx 1$. It is therefore very likely that there is a match.
9. (a) (5 points) 4. Victor chooses $i=1$ or $i=2$ and asks Peggy for R_{i}, which she sends. 5. Victor checks that $2 R_{i}=H_{i}$. (b) (5 points) 1. Peggy chooses random $r_{1} \bmod n$ and computes $r_{2} \equiv x / r_{1}(\bmod n)$.
2. Peggy computes $h_{1}=r_{1}^{2}$ and $h_{2}=r_{2}^{2} \bmod n$ and sends h_{1} and h_{2} to Victor.
3. Victor checks that $h_{1} h_{2} \equiv s(\bmod n)$.
4. Victor chooses $i=1$ or $i=2$ and asks for r_{i}, which Peggy sends.
5. Victor checks that $h_{i} \equiv r_{i}^{2}$.
6. They repeat several times.
10. (10 points) We need to solve $d e \equiv 1(\bmod (p-1)(q-1))$, which means $11 d \equiv 1(\bmod 216)$. Use the Extended Euclidean Algorithm to obtain $1=216(-3)+11(59)$. Therefore, $d=59$.
11. (10 points) It is fast. It is not collision-free: $h(M\|M\| M)=h(M)$. It is not preimage resistant: $h(M)=M$.
12. (a) (10 points) $N=p-1$ since it deals with the exponents. Verification congruence:

$$
r^{r} \equiv g^{k r} \quad(\bmod p), \quad h^{m} g^{s} \equiv g^{m a} g^{k r-a m} \equiv g^{k r} \quad(\bmod p)
$$

(b) (5 points) Eve needs to solve $9^{9} h^{-m} \equiv g^{s}(\bmod p)$ for s. This is a discrete log problem, so it's hard.
(c) (5 points) Signing congruences: $r \equiv g^{k}(\bmod p)$ and $s \equiv k r-a H(m)(\bmod p-1)$; Verification: $r^{r} \equiv$ $h^{H(m)} g^{s}(\bmod p)$.
13. (10 points) Eve makes two lists: (1) $E_{K}\left(m_{1}\right)$ for all 10^{12} keys K. (2) $c_{1} \oplus B$ for all 10^{12} binary strings B. She finds all pairs (K, B) that yield matches. She tests each such pair on the remaining $\left(m_{i}, c_{i}\right)$. It is very likely that only one key pair (K, B) survives.
14. (5 points) HAVEAGOODSUMMER

